ISC 和 TTET(k ISC 和 k TTET )分别估计为 5.0 × 10 7 s -1 和 4.4 × 10 9 s -1
摘要:光点击反应结合了光驱动过程和传统点击化学的优势,已在表面功能化、聚合物共轭、光交联和蛋白质标记等多个领域得到应用。尽管取得了这些进展,但大多数光点击反应对紫外光的依赖性对其普遍应用造成了严重障碍,因为这种光可能会被系统中的其他分子吸收,导致其降解或发生不必要的反应。然而,开发一种简单有效的系统来实现红移光点击转换仍然具有挑战性。在这里,我们引入了三重态-三重态能量转移作为一种快速而选择性的方式来实现可见光诱导的光点击反应。具体而言,我们表明,在催化量(少至 5 mol%)的光敏剂存在下,9,10-菲醌 ( PQ s) 可以与富电子烯烃 ( ERA ) 有效反应。光环加成反应可以在绿光(530 nm)或橙光(590 nm)照射下实现,与经典的PQ-ERA体系相比,红移超过100 nm。此外,通过组合适当的反应物,我们建立了正交的蓝光和绿光诱导的光点击反应体系,其中产物的分布可以通过选择光的颜色来精确控制。
摘要:有机半导体中的三重态激发态通常是光学的黑暗和长寿的,因为它们具有自旋孔向单线基态的旋转过渡,因此在轻度收获的应用中阻碍了过程。此外,三胞胎通常会对系统造成损害,因为它们可以使反应性单线氧的形成敏感。尽管有这些不利的特征,但存在我们可以利用三胞胎状态的机制,这构成了本综述的范围。开始对三胞胎状态问题的简短探索,我们继续阐明有机材料中三重态利用的主要机制:1。磷光(pH),2。热活化的延迟荧光(TADF)和3。三重态 - 三胞胎歼灭(TTA)。在每个部分中,我们都会揭示其工作原则,强调其广泛的应用程序,并讨论其局限性和观点。我们特别注意在有机发光二极管(OLEDS)中使用这些机制,因为OLEDS是有机半导体的最繁荣的商业应用。本综述旨在为读者提供见解和机会,以与有机半导体的光物理特性和设备物理学进行研究,尤其是在利用三胞胎状态的潜力方面。关键字:磷光,TADF,TTA,三胞胎状态,交叉Intersystem cropsing■简介
值得注意的是,除了激子基态漂白剂外,界面三重能量转移的每种化合物都在能量上有利,在较长的波长(大约450 - 650 nm)以外的较长波长处表现出广泛的光诱导吸收(PIA)特征。在图2 B中为选定样品显示了此波长范围的扩展视图。对于每种富含溴化物的化合物,广泛的PIA特征是长期寿命的,并且在瞬态吸收设置订立的5 ns窗口范围内不会完全衰减。然而,纯碘化物化合物(1,5 NDA)PBI 4的瞬态光谱仅包含激子漂白剂,并且在更长的波长下没有明显的PIA。至少在定性上,这些模式表明长寿的PIA可能与萘三胞胎物种有关。该分配与以前的微秒瞬时吸收研究一致,该研究是根据萘的浓缩,三联敏化溶液进行的,其中作者在450 - 650 Nm区域中观察到与单性链接的450 - 650 NM区域中具有与单烯烯型Naphthalene Treepemere excimerersecimerer的450 - 650 Nm区域的广泛交流荷兰转移吸收带。28在含有thieno [3,2- b]硫烯-2噻吩-2甲基铵阳离子(结构上与萘)中的RP 2D钙钛矿中也观察到了类似的广泛PIA特征,并分配给有机分子的三重态兴奋。5基于我们的实验观察结果以及与文献中的示例的这些比较,我们认为450 - 650 nm探针范围内的宽阔而长的PIA与萘三胞胎物种有关。
图4:用于700 nm泵以下的溶剂处理的双层膜的Ultrafast TA。a)ta表面,b)在选定延迟时间处的相应光谱。特征性的钙钛矿光漂白和光诱导的吸收特征分别标记为PB2,PB1和PIA1。底行中的光谱插图突出显示了rubrene在515 nm处的T 1→T N过渡,在550 nm处突出了rubrene和rubrene polaron。ta表面上的白色盒子和光谱中的灰色盒子表示激光散射过多。
DNA模板链中的一个特定碱基三联体为5'Agt 3'。此序列对应于密码子:O3'UCA 5。问题22(2分)以下哪项是密码子不正确的?它永远不会代码多个氨基酸;它是遗传密码的基本单位;它代码甲硫氨酸停止;它可能与另一个密码子相同的氨基酸编码;或它由三个核苷酸组成。将mRNA转化为多肽的主要结构的准确性取决于:核糖体与mRNA的结合,反密码子与密码子的键,核糖体的A和P位点的形状,氨基酸与TRNA的附着;或以上所有选项。模板链以3'至5'的方向读取,而mRNA则以5'至3'方向读取。在mRNA中发现的相应密码子将是UCA。
摘要:由有机半导体和无机量子点 (QD) 组成的混合物适用于许多光电应用和设备。然而,有机 QD 混合物中的各个组分在薄膜加工过程中很容易聚集和相分离,从而损害其结构和电子特性。在这里,我们展示了一种 QD 表面工程方法,该方法使用与有机半导体主体材料相匹配的电子活性、高溶解度半导体配体来实现分散良好的无机 - 有机混合薄膜,其特征是通过 X 射线和中子散射以及电子显微镜来表征的。这种方法保留了有机相和 QD 相的电子特性,并在它们之间创建了优化的界面。我们在两个新兴应用中对此进行了举例说明,即基于单线态裂变的光子倍增 (SF-PM) 和基于三线态 - 三线态湮没的光子上转换 (TTA-UC)。稳态和时间分辨光谱表明,三线态激子可以以接近 1 的速度高效地跨有机 - 无机界面传输,而有机薄膜在有机相中保持高效的 SF(产率为 190%)。通过改变有机和无机成分之间的相对能量,在 790 nm NIR 激发下观察到黄色上转换发射。总体而言,我们提供了一种高度通用的方法来克服有机半导体与 QD 混合的长期挑战,这对许多光学和光电应用都具有重要意义。■ 简介
摘要:由有机半导体和无机量子点 (QD) 组成的混合物适用于许多光电应用和设备。然而,有机 QD 混合物中的各个组分在薄膜加工过程中很容易聚集和相分离,从而损害其结构和电子特性。在这里,我们展示了一种 QD 表面工程方法,该方法使用与有机半导体主体材料相匹配的电子活性、高溶解度半导体配体来实现分散良好的无机 - 有机混合薄膜,其特征是通过 X 射线和中子散射以及电子显微镜来表征的。这种方法保留了有机相和 QD 相的电子特性,并在它们之间创建了优化的界面。我们在两个新兴应用中对此进行了举例说明,即基于单线态裂变的光子倍增 (SF-PM) 和基于三线态 - 三线态湮没的光子上转换 (TTA-UC)。稳态和时间分辨光谱表明,三线态激子可以以接近 1 的速度高效地跨有机 - 无机界面传输,而有机薄膜在有机相中保持高效的 SF(产率为 190%)。通过改变有机和无机成分之间的相对能量,在 790 nm NIR 激发下观察到黄色上转换发射。总体而言,我们提供了一种高度通用的方法来克服有机半导体与 QD 混合的长期挑战,这对许多光学和光电应用都具有重要意义。■ 简介
原发性肝癌新发病例数为 90.6 万,在恶性肿瘤增长中位居第六位。此外,肝癌死亡人数为 83 万,在死亡率方面位居第三位(Sung et al.,2021)。肝细胞癌 (HCC) 是原发性肝癌的最重要形式,约占肝癌病例的 90%(Anwanwan et al.,2020)。多种风险因素可导致原发性肝癌的发展,包括乙型肝炎病毒 (HBV) 感染、丙型肝炎病毒 (HCV) 感染、纤维化慢性肝损伤、黄曲霉毒素 B1 和过量饮酒(Akinyemiju et al.,2017;欧洲肝脏研究协会和欧洲癌症研究与治疗组织,2012 年)。 HCC从具有微小基因突变的异常增生病变持续发展到HCC晚期,表现出涉及多种分子的显著分子异质性(Marquardt et al., 2015)。HCC发展多个阶段的广泛肿瘤异质性阻碍了患者的分层和有效治疗(Giannelli et al., 2016)。因此,探索HCC的肿瘤异质性将有助于对患者进行分层和有效治疗。HCC的肿瘤转化通常起源于肝细胞和祖细胞,两者都是上皮细胞类型。这些上皮细胞的可塑性变化通常被称为上皮-间质转化(EMT),增加了细胞异质性的复杂性(Giannelli et al., 2016)。癌细胞中的EMT程序可以在侵袭和转移过程中以不同程度暂时或稳定地激活。粘附分子高表达可增强细胞的迁移能力和侵袭性。大量证据表明,EMT在癌症侵袭和转移中起着重要作用(Nieto et al.,2016;Thiery et al.,2009;Thiery,2002;Hanahan and Weinberg,2011)。通过分析恶性上皮性肝细胞的各种EMT表型,研究人员可以评估HCC的复杂性和细胞异质性。很少有研究在大量的活检样本中研究几种EMT标志物,因此很难仅根据单一标志物来判断EMT的发生(Yang et al.,2009)。E-cadherin与occludin或细胞角蛋白一起代表了最常用的上皮特征标志物,而N-cadherin和vimentin是最常见的EMT标志物。
摘要:脑电信号作为一种新型的生物特征被用于生物特征认证。为了解决传统分类网络难以有效拓展分类数目的问题以及提高工程实用性,本文提出一种基于注意力机制和三重态损失函数的脑电数据认证方法。该方法首先将脑电信号输入深度卷积网络,利用长短期记忆网络结合注意力机制将其映射到512维欧氏空间,得到包含身份信息的脑电信号特征向量;然后利用三重态损失函数调整网络参数,使得同类信号特征向量之间的欧氏距离减小,不同类信号之间的欧氏距离增大。最后,使用公开的脑电数据集对该识别方法进行评估。实验结果表明,该方法在保持识别率的同时,有效拓展了模型的分类数目,提高了脑电认证的实用性。