硅通孔技术是一种有前途的、可优先实现三维集成电路(3-D IC)可靠互连的方法,可将多个芯片的热量沿垂直方向传递到热沉。本文提出了一种新的硅通孔(TSV)通用模型来研究3-D IC的热性能。首次研究了锥环TSV的传热特性。详细比较和分析了不同侧壁倾角和TSV绝缘层厚度对3-D IC散热的影响。正如预期的那样,我们提出的模型与现有模型的结果一致性很好,这表明考虑横向传热和TSV结构的模型可以更有效、更准确地预测温度分布。此外,研究发现锥环TSV具有更优异的散热性能。关键词 : 3-D集成电路,解析热模型,
在这项工作中,我们提出了一种异质整合解决方案,用于将高级节点CMO与GAAS激光器和光电二极管以及光子积分电路(PIC)相结合,以在增加带宽密度和减少每个区域的功率消耗方面推动限制。通过硅VIA(TSV)进行3D集成,包括高密度,20个Ilin螺距芯片到芯片互连,以及通过3D打印形成的光学互连。已经开发了一种TSV last集成方案,以与PIC制造和开发的自定义电镀解决方案兼容,以实现无效的填充。微气象夹选项,例如SN或AU,以与多项目晶圆(MPW)运行的Die兼容,并提出了测量的电气,以将CMOS芯片与3D PIC整合在一起。关键字:光子学,TSV,异质整合。
摘要 — 为了突破电气链路的带宽和延迟限制,高性能计算集成的下一个突破最终将通过光子技术和片上光网络 (ONoC) 实现。这项工作介绍了 ONoC 的整体架构,并报告了在 200 mm Leti 平台上 SOI 晶圆上的 Si 光子中介层的详细集成和制造。已成功实现了在 1310 nm 波长下工作的有源光子电路、12 µm 直径 100 µm 高度的硅通孔 (TSV) 中间工艺、带有 µ 柱的四层金属后端线路 (BEOL) 和加热器上方带有热腔的背面重分布层。横截面的形态表征评估了工艺发展和集成结果。在有源光子末端和 TSV / BEOL 工艺之后,在肋和深肋结构上测量的光传播损耗以及在单偏振光栅耦合器 (SPGC) 结构上的插入损耗均未显示偏差。 TSV 中间电阻经评估低于 22 mΩ,成品率大于 95%。最后,讨论了功能性 ONoC 系统所需的所有单个工艺块,尤其是环形调制器,以及它们成功优化的协同集成。
PIC SOI 晶圆上的附加光子设计层与 BiCMOS BEOL 层一起 LBE 提供局部背面蚀刻模块,用于局部去除硅以提高无源性能(适用于所有技术) TSV 模块是 SG13S 和 SG13G2 技术中的附加选项,可通过硅通孔提供 RF 接地以提高 RF 性能。 MEMRES 基于 SG13S 技术中的电阻式 TiN/HfO 2-x/TiN 开关器件的完全 CMOS 集成忆阻模块。还提供包括布局和 VerilogA 仿真模型的工艺设计套件。 TSV+RDL 模块是 SG12S 和 SG13G2 技术中的附加选项,在 BiCMOS 上提供具有单个重新分布层的 TSV
PIC SOI 晶圆上的附加光子设计层以及 BiCMOS BEOL 层 LBE 局部背面蚀刻模块可用于局部去除硅以提高无源性能(适用于所有技术) TSV 模块是 SG13S 和 SG13G2 技术中的附加选项,可通过硅通孔提供 RF 接地以提高 RF 性能 MEMRES 基于 SG13S 技术中的电阻式 TiN/HfO 2-x/TiN 开关器件的全 CMOS 集成忆阻模块。还提供包括布局和 VerilogA 仿真模型的工艺设计套件。 TSV+RDL 模块是 SG13S 和 SG13G2 技术中的附加选项,在 BiCMOS 上提供带有单个重分布层的 TSV
Micro-fabricated Surface Electrode Ion Trap with 3D-TSV Integration for Scalable Quantum Computing Jing Tao 1 , Luca Guidoni 2 , Hong Yu Li 3 , Lin Bu 3 , Nam Piau Chew 1 and Chuan Seng Tan 1* 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 2 Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, France, 75205 3 Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 117685 Email: tancs@ntu.edu.sg Abstract In this paper, 3D architecture for TSV integrated Si surface ion-trap is proposed, in which the TSV and microbump technology is used to connect the surface electrodes of ion trap到底部的Si插座。伪电位模拟用于确定“平面陷阱”和“ TSV陷阱”几何形状的捕获离子高度。在两种情况下均未观察到伪能力的显着偏差。初步的微型离子陷阱芯片是特征的。所提出的技术在形式和寄生降低微型表面离子陷阱方面有希望,用于可扩展的量子计算应用。(关键字:表面离子陷阱,3D TSV集成,量子计算)简介量子计算被广泛吹捧为维持对高性能计算未来需求的最有可能的技术之一。实现量子计算机的一种有希望的方法是将悬浮在真空中的原子离子用作量子位(Qubits)来执行量子操作[1]。离子被一组产生静态(DC)和射频(RF)电场的表面电极限制在自由空间中。具有适当波长的激光束用于将离子冷却到地面振动能状态,并通过解决离子的电子能态执行量子操作。现代离子陷阱芯片促进了在SI基板上制造的大量多段表面电极,以操纵高密度离子阵列或形成多个离子捕获区[2]。离子捕获技术的关键挑战之一是以可扩展的方式将不断增加的电极号互连到外部DC/RF电源。传统的电线键合方法需要在芯片表面积上设计耗尽空间的外围粘结垫设计,并且还具有从芯片外围到被困离子的激光障碍物的缺点。使用高级3D集成技术,提议将离子陷阱芯片垂直堆叠在Si插台上,在该插座机上,将通过(TSV)和微型凹凸在其中形成垂直互连以连接表面电极。图1显示了所提出的TSV积分离子陷阱模具的示意图,该陷阱堆叠在Si插孔器上,其中一个离子被困在陷阱芯片表面上方。提出的架构提供了一个微型离子陷阱系统,其优势具有高密度电极积分能力,较小的RC延迟,紧凑的外形尺寸和芯片表面激光束的清晰可访问性。
摘要 本研究开发了用于三维集成电路 (3D-IC) 的背面埋入金属 (BBM) 层技术。该技术在每个芯片背面的大片空白区域引入用于全局电源布线的 BBM 层,并与芯片正面布线并联。电源 (V DD ) 和地 (V SS ) 线的电阻因此而降低。此外,由于 BBM 结构埋入 Si 衬底中并具有金属-绝缘体-硅结构,因此可充当去耦电容。因此,引入 BBM 层可以降低电源传输网络的阻抗。3D-IC 的 BBM 层制造工艺简单,并且与后通孔硅通孔 (TSV) 工艺兼容。利用该工艺可以在 CMOS 芯片(厚度:43 µm)背面埋入由电镀 Cu(厚度:约 10 µm)组成的 BBM 层,并通过直径 9 µm 的 TSV 将 BBM 与芯片正面布线相连。 关键词 三维集成电路(3D-IC),背面埋入金属(BBM)层,硅通孔(TSV),供电网络 I. 引言 采用硅通孔(TSV)的三维集成电路(3D-IC)技术[1]–[5]是生产先进、高速、紧凑和高功能电子系统的有效方法。然而,堆叠多个芯片会导致电路设计的电源完整性问题。例如,由于可用于电源和地线的 TSV 数量有限,3D-IC 中的 IR 压降会增加。此外,在 3D-IC 中同时切换堆叠芯片时,会产生很大的同时切换噪声(di/dt 噪声)。这种同步开关噪声会在电源输送网络 (PDN) 中产生不可预测的电压变化,从而导致系统故障。为了解决这一电源完整性问题,不仅必须在电路板/中介层级降低 PDN 的阻抗,还必须在芯片级降低 PDN 的阻抗,并提高电源输送的可靠性。先前的研究提出了一些降低芯片级 PDN 阻抗的方法。第一种方法是加宽电源线/地线。这种方法非常简单,但由于线路资源有限,难以应用。
1102使用玻璃 - 塞硅直接粘合TSV/晶圆包装Cheemalamarri,Hermanth Kumar Kumar Institute of Hermanth Kumar Institute of Hermonth Kumar of Microelectronics(IME),新加坡新加坡新加坡新加坡新加坡新加坡新加坡
对etch速率依赖倍数的影响:实验和建模Lingkuan Meng Meng Microectronics,中国科学院,北京100029,P。R.中国作为3D IC技术的演变,TSV(通过Silicon via via via)eTch的发展越来越多
简介高级PKG技术HI技术解决方案1。风扇输出IC基材的新SAP流2。通过晶圆过程3。< / div> fine l / s ic底物图案。< / div>PCM和TSV的技术策略针对AI硬件4。摘要确认