靶向药物输送可改善细胞对药物的吸收并降低毒性,近年来取得了进展。近 60 年来,脂质体一直被研究用作纳米载体,将药物靶向到其作用位点 [1]。由于脂质体具有与细胞磷脂结构相似的独特结构,并且脂质体可以配制成不同的形式,因此它们被用作药物输送系统。亲水性和疏水性药物都可以封装在脂质体的核心内,用于输送各种药物,例如用于治疗结核病和肝炎的抗癌药物和抗感染药物 [1-3]。此外,大的水性中心和生物相容性的脂质外部允许输送大分子,例如 DNA、蛋白质和成像剂。脂质体通过稳定治疗化合物、克服细胞和组织吸收障碍以及改善化合物在体内靶点的生物分布,改善了一系列生物医学应用的治疗方法。作为一种药物输送系统,脂质体具有多种优势,包括生物相容性、容量和生物物理特性,可以对其进行修改以控制其生物学特性。脂质体制剂的特点是粒径、
巴基斯坦的马铃薯 ( Solanum tuberosum L.) 种植面临挑战,其中由立枯丝核菌 (Rhizoctonia solani Kühn) 引起的黑痂病是一个严重问题。化学杀菌剂等传统方法可以部分控制该病,但缺乏有效的解决方案。本研究探讨了生物肥料和菊科杂草生物质土壤改良剂在控制该病害方面的潜力。选择了两个马铃薯品种 Karoda 和 Sante,并单独或与苍耳生物质一起测试了两种生物肥料 Fertibio 和 Feng Shou。阳性对照中的病害压力最高,化学杀菌剂可显著降低病害压力。苍耳生物质也显著降低了病害发生率。Fertibio 的效果优于 Feng Shou。施用生物肥料和生物质可以改善植物的生理生化特性。块茎重量、光合色素、总蛋白质含量和抗氧化酶(CAT、POX 和 PPO)呈正相关。Fertibio 和 S. marianum 生物质的联合应用可有效控制黑斑病。这些环保替代品可以增强疾病管理和产量。未来的研究应探索它们的成本效益、商业化和安全性。
越来越多的肥料在洋葱种植中可以治疗农业可持续性。迫切需要环保的替代肥料。其中之一是局部微生物(LMO),它是从废物/天然材料中开发的,例如虾壳和金色的蜗牛。虾壳含有N,P,K,C,Mg和Fe的营养。黄金蜗牛对水稻植物是危险的害虫,但可以用作有机肥料。本研究旨在确定给予虾壳和黄金蜗牛的LMO对葱的生长和产量的影响。该实验使用了随机块设计,八种治疗方法,四种复制,即没有LMO,1.2 g植物-1 NPK肥料; 250毫升,300毫升和350毫升虾壳LMO; LMO金色蜗牛250毫升,300毫升和350毫升。结果表明,提供虾壳和金蜗牛的局部微生物能够增加葱的生长和产量,这表明植物高度,叶子数量,新鲜重量和每植物的干重。块茎干重的增加范围为130%至239%(比对照组高2.3倍至3.4倍)。
马铃薯 ( Solanum tuberosum L.) (2 n = 4 x = 48) 是人类消费量继大米和小麦之后的第三大重要粮食作物。马铃薯被视为欧洲和美洲部分地区的主食。2018 年,世界马铃薯总产量为 3.6817 亿吨,其中中国(9026 万吨)位居第一,印度(4853 万吨)紧随其后(FAOSTAT,2018 年)。世界人口将从现在的 77 亿增加到预计 2050 年的 97 亿,对粮食供应构成了巨大挑战(联合国,2019 年)。马铃薯易受到各种病原体、害虫和环境非生物胁迫的侵害。在气候变化情景下,情况正在恶化。在印度,主要马铃薯种植邦的平均马铃薯产量(占全国马铃薯产量的 90%)可能会在 2050 年代下降 2.0%,在 2080 年代下降 6.4%(Rana 等人,2020 年)。为了解决这些问题,常规育种在品种开发计划中发挥了关键作用,同时结合标记辅助选择,主要针对晚疫病、病毒和马铃薯胞囊线虫 - 世界各地的抗性品种,例如印度的 Kufri Karan(ICAR-CPRI 年度报告,2018-19 年)。后来,马铃薯转基因技术也得到了开发,以抵抗疾病(如晚疫病和病毒)、非生物胁迫(如高温和干旱)、害虫(如马铃薯胞囊线虫和马铃薯块茎蛾)、加工品质(如降低冷诱导甜度),但它们均未在田间应用。因此,随着测序技术的进步和马铃薯基因组序列的可用性(马铃薯基因组测序联盟,2011),有可能应用基因组学工具(如基因组编辑)来调节目标基因。基因组编辑是一种先进的基因组学工具,可通过基因敲除和插入/缺失诱变来改良作物(Hameed 等人,2018)。它允许在基因组中的特定位点发生双链断裂(DSB),并通过自然发生的 DNA 修复机制进行修复,即非同源末端连接 (NHEJ) 或同源重组 (HR)。过去,该系统早期由蛋白质引导的核酸酶促进,例如锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN)。但现在,人们的注意力转向了一种新的 RNA 引导核酸酶,称为成簇的规律间隔的短回文重复序列 (CRISPR) — CRISPR 相关 (Cas) (Nadakuduti 等人,2018)。与组装 CRISPR/Cas 相比,TALEN 和 ZFN 需要特殊的专业知识、更长的时间和更高的成本。事实上,据报道,CRISPR/Cas 在作物中的应用取得了巨大进展。在马铃薯中,CRISPR/Cas 已被证明可以改善块茎品质、抗病性(晚疫病和马铃薯 Y 病毒)、表型和其他性状(Dangol 等人,2019 年;Hameed 等人,2020 年;Hofvander 等人,2021 年)。本文介绍了 CRISPR/Cas 的现状、未来前景以及马铃薯面临的挑战。
摘要这项研究确定了在Zamfara州Gusau的Tudun Wada Market中有助于降解地瓜的真菌。从各个市场中收集了36种地瓜样品,以及六个用于致病性测试的其他块茎。使用标准微生物技术来隔离,筛选和识别与变质相关的真菌。的发生百分比和致病性测试,以确定患病率并评估对块茎体重减轻的影响。存储过程中的生理变化,例如软化,干燥,变色和进攻气味。真菌计数范围从2.5±1.0 cfu/ml到4.±1.5 cfu/ml,yan dankali表现出最低的计数,Yan Kayan Koli最高。确定的真菌属包括尼日尔曲霉,曲霉曲霉,杂田Theobromoae,fusarium oxysporium,Rhizopus stolonifer和Penicillium物种。尼日尔曲霉的发生较高,而botryodiplodia theobromoae的出现最少。致病性测试有助于确定真菌在红薯变质中的作用,通过伤害穿透块茎,并在储存条件下繁荣发展。这些微生物的淀粉分解导致甘薯恶化。尽管针对马铃薯疾病的特定管理实践欠发达,但采用健康的种植材料和卫生措施可以减轻通过藤蔓片传播的地瓜中的真菌疾病。
摘要 马铃薯 ( Solanum tuberosum L.) 在确保全球粮食和营养安全方面发挥着重要作用。生物和非生物胁迫都会对块茎产量产生负面影响,而酶促褐变和冷诱导甜化则会严重导致收获后品质损失。面对人口增长和气候变化的双重挑战,马铃薯改良对其可持续生产至关重要。然而,由于马铃薯具有多种特性,包括高杂合性、四体遗传、近交衰退和二倍体马铃薯的自交不亲和性,常规育种方法不足以在相对较短的时间内实现四倍体马铃薯品种的显著性状改良。CRISPR/Cas 介导的基因组编辑为开发具有高商业化潜力的新型马铃薯品种开辟了新的可能性。在这篇综述中,我们总结了优化基于 CRISPR/Cas 的马铃薯基因组编辑方法的最新进展,重点介绍了解决该物种具有挑战性的生物学问题的方法。我们还讨论了获得无转基因基因组编辑马铃薯品种的可行性,并探索了提高马铃薯抗逆性、营养价值、淀粉组成以及储存和加工特性的不同策略。总之,本综述深入了解了使用 CRISPR/Cas 技术进行马铃薯基因组编辑的最新进展、可能的瓶颈以及未来的研究方向。
10。女性农民Nituben Patel在2024年MFOI奖中被加冕为“印度最富有的农民”,12。Yuvraj Parihar在MFOI奖2024 14中以“印度最富有的农民”为名。Renu Sangwan在印度百万富翁农民(MFOI)奖2024年获得“国家奖”。水产养殖 - 废水开垦的有效工具18。使农业弹性成为Vision-2047的农民福利的方法。20。印度超级食品的失落故事:回到我们根源的旅程22。农民的儿子从古吉拉特邦吉尔·索纳斯到全球市场的旅程24。机械化与印度农业的未来26。建造蔬菜簇28。AI农业自动化培养农业的未来30。从田野到期货32个政策转变以解决反向移民34拜耳赋予印度农民的能力成长并赚更多36。喀拉拉邦的块茎作物38。K-Max Super由Elga Energy的成功故事,西班牙专利的UPT技术Rajesh Anjana的经验39。依赖Jivagro的完整辣椒投资组合40。小空间大冲击42。Bioe3策略44。种子变化46。赋予农民权力48。发现Jivagro:改变游戏的决定
摘要:马铃薯 ( Solanum tuberosum L.) 是继水稻和小麦之后的第三大重要粮食作物。其块茎富含以淀粉形式存在的膳食碳水化合物,具有多种工业应用。淀粉由直链淀粉和支链淀粉两种多糖组成,它们的比例决定了不同的特性和功能。支链淀粉含量较高的马铃薯品种具有多种食品加工和工业应用。利用农杆菌介导的转化技术,我们将成簇的规律间隔短回文重复序列和 CRISPR 相关蛋白 9 (CRISPR/Cas9) 试剂递送到马铃薯 (品种 Yukon Gold) 细胞中,以破坏颗粒结合淀粉合酶 ( gbssI ) 基因,目的是消除淀粉的直链淀粉成分。块茎的卢戈氏碘染色表明,在一些编辑事件中直链淀粉减少或完全消除。高氯酸和酶法进一步证实了这些结果。一个事件 (T2-7) 显示所有四个 gbss 等位基因均发生突变,块茎中的直链淀粉被完全消除。使用快速粘度分析仪 (RVA) 测定了来自六个不同敲除事件的块茎淀粉的粘度曲线,这些值反映了支链淀粉/直链淀粉的比例。后续研究将重点关注从事件中消除 CRISPR 成分,并评估具有各种直链淀粉/支链淀粉比例的克隆在食品加工和其他工业应用中的潜力。
简介:糖尿病(DM)是一种慢性疾病,具有自由基和碳水化合物 - 水解酶在其进展中起关键作用。Yacon或Smallanthus sonchifolius(poepp。)H.ROB是一种低糖作物,已显示出有希望的生物活性。这项研究旨在探索Yacon Tuber提取物(YTE)的抗糖尿病和抗氧化潜力。Methods: YTE's antioxidant and enzyme inhibitory activities were assessed using 2,2-diphenyl- 1-picrylhydrazyl (DPPH) at concentrations of 6.25, 12.5, 25, 50, 100, 200 µg/mL, hydrogen peroxide (H₂O₂) scavenging activity at 12.5, 25, 50, 100, 200, 400 µg/mL, 3-乙基苯甲噻唑啉-6-磺酸(ABT)和铁降低抗氧化能力(FRAP),在1.56、3.13、6.25、12.5、25、25、50 µg/ml。抑制α-淀粉酶,α-葡萄糖苷酶(6.25、12.5、25、50、100、100、200 µg/ml)和葡萄糖6-磷酸酶(G6Pase)(5.51,11.03,22.6,22.6,22.6,44.12,44.12,844.12,88.24,176.47 g/ml)。植物化学分析确定了关键的生物活性化合物,并确定了IC₅₀值以量化YTE的抗氧化剂和抗糖尿病电位。结果:YTE包含类黄酮,萜类,三萜和酚类化合物。与其他浓度相比,它在200、50、400和50 µg/ml的DPPH,ABTS,H₂O₂和FRAP测定中显示出最高的抗氧化活性(P <0.05)。在DPPH,H₂O₂和ABTS分析中,IC₅₀值分别为105.77μg/ml,726.64μg/ml和61.03μg/ml。以50 µg/ml的速度为338.68μm/μgfe(II)。yte还抑制了174.95μg/ml,222.17μg/ml和112.51μg/mL的IC₅₀值的α-淀粉酶,α-葡萄糖苷酶和G6Pase。结论:YTE表现出显着的抗氧化特性,并抑制了碳水化合物 - 水解酶,表明其作为抗糖尿病剂的潜力。
摘要 木薯 (Manihot esculenta. Crantz) 是一种富含淀粉的木质块茎根作物,可作为重要的食物,尽管其潜力巨大,但很少有人研究它作为生物能源作物的潜力。这种作物发挥这种双重作用的主要瓶颈是其块茎在两种用途上的竞争。主要的木薯产区主要将块根用作食物,这导致它作为生物能源作物被忽视。使用非食用木薯部分作为纤维素生物燃料生产的原料是一种很有前途的策略,可以克服这一挑战。然而,在非块茎部分,大多数糖分都被木质素复合物高度隔离,使其无法被细菌生物转化。此外,由于多种生产限制,这些主要种植区的木薯产量并不理想。影响木薯作为食品和生物能源作物生产的挑战是相互关联的,因此需要一并解决。通过改良木薯以抵抗生物和非生物胁迫,可以提高产量,满足根部对食物和生物能源生产的高需求。此外,产量的提高将提高非食品部分用于生物能源的可用性,这是更大的目标。本综述讨论了通过改良木薯以抵抗降低其生产力的胁迫的努力,以及提高生物量生产的策略,这两者都对食物和生物能源都很重要。此外,还探讨了可以简化木薯生物转化以提高生物能源生产的潜在策略。