量子计算诞生于量子物理学和计算机科学的交叉领域。与使用比特(0 和 1)来处理信息的传统计算机不同,量子计算机利用的是量子比特或量子位。这些量子位可以同时存在于多种状态中,这种现象称为叠加。这一特性,加上纠缠等其他量子力学效应,使量子计算机能够以比传统计算机快得多的速度执行某些计算。
摘要本教程的主要目标是促进世界上不同语言的发展语言障碍(DLD)的研究。这些努力的累积效应可能是一系列对语言学习困难以及一般语言获取的更具吸引力和全面的理论。对儿童和当地社会的好处也可能会产生。在介绍了针对LAN Guage障碍儿童的跨语言研究中涉及的一些初步考虑之后,我们提供了可能提出的问题类型的示例。这些示例由我们自己的合作工作研究为孩子们提供跨广东话,芬兰语,德语,希伯来语,匈牙利语,意大利语,西班牙语,瑞典语和土耳其语以及英语的语言。还包括调查人员对其他语言的工作的示例。我们讨论了DLD儿童及其年龄和年龄较小的同龄人的语言内部比较以及DLD儿童的语言比较。示例涉及形态学,韵律,句法运动,动词范式复杂性和潜在机制等问题。这些示例(与当前的理论和假设都绑在一起)必然仅限于已经受到调查关注的语言的类型。通过从更广泛的学科中参与儿童语言学者,我们可以扩大所研究的语言的数量和类型,因此,大大增强了我们对童年语言障碍的理解。
抽象的门级设计和电路模拟是构建复杂数字电路的基本过程。本文着重于两个通用数字逻辑门的设计和电路模拟。NAND和NOR GATES使用Cadence Virtuoso软件。研究利用了在每个逻辑门上进行的瞬态分析的多功能环境,以模拟对输入脉冲信号的输出响应。将模拟的结果绘制为瞬态图,以正确地可视化门操作。模拟结果表明,NAND和NOT门都经过了适当的操作,这通过其真实表得到了进一步验证。当两个输入信号都高时,NAND门仅产生低输出信号。当所有输入信号都较低时,NOR GATE才会产生一个很高的输出信号。通过严格的模拟和细致的分析,这项研究发现了这些逻辑门的动态行为,从而阐明了它们的功能和性能特征。1。简介
~ 30%:高知名度出版物:Nature materials、Nature energy、Nature physics、Nature chemistry、PRL、Nature Communications、PRX、Advanced materials、Angewandte Chemie International Edition、JACS 等;
摘要 人工智能 (AI) 是一门拥有数十年历史的学科,由于取得了惊人的进展,解决了几年前无法想象的问题,例如文本、图像和视频的生成模型,人工智能正迎来黄金时代。人工智能的广泛应用也已进入物理学领域,为瓶颈问题提供解决方案,例如无法解决某些问题或耗时极长的数值方法、量子实验的优化或量子比特控制。此外,量子计算已成为加速人工智能计算的极佳方法,尤其是在数据驱动的人工智能即机器学习 (ML) 的情况下。量子机器学习 (Quantum ML) 一词已经广为人知,涉及量子计算机或量子退火器中的学习、经典机器学习模型的量子版本以及用于量子测量和控制的不同学习方法。量子人工智能 (QAI) 试图向前迈出一步,提出颠覆性的概念,例如人机量子计算机界面、量子计算机中的情感分析或量子计算的可解释性等。本次特别会议包括五篇有关相关主题的高质量论文,例如量子强化学习、量子计算并行化、量子特征选择和量子矢量量化,从而捕捉了 QAI 中方法的丰富性和多样性。
本教程的目的是对线性量子控制系统进行简要介绍。首先介绍线性量子控制系统的数学模型,然后介绍一些基本的控制理论概念,例如稳定性、可控性和可观测性,这些概念与量子信息科学中的几个重要概念密切相关,例如无退相干子系统、量子非破坏变量和反作用规避测量。之后,介绍量子高斯态,特别是介绍信息论不确定性关系,它通常比众所周知的海森堡不确定性关系为混合高斯态提供更好的界限。介绍了量子线性系统的量子卡尔曼滤波器,它是经典(即非量子力学)线性系统的卡尔曼滤波器的量子类比。记录了量子线性系统的量子卡尔曼正则分解,并通过最近的实验说明了它的应用。由于单光子和多光子状态是量子信息技术中的有用资源,因此介绍了量子线性系统对这些类型输入的响应。最后,简单介绍了量子线性系统的相干反馈控制,并用近期实验证明了量子线性系统与网络理论的有效性。
本教程的材料发布在网站上:https://www.neuroinference.com/course/rl4speech。随附的调查:“言语和语言处理的强化学习和土匪:教程,评论和前景”(https://arxiv.org/abs/2210.13623)
抽象的X射线衍射(XRD)是表征电杂色材料薄膜的必不可少的工具。但是,对于初学者而言,由于操作模式和测量类型的数量以及对结果模式和扫描的解释,首先可能是一种艰巨的技术。在本教程文章中,我们为使用XRD进行首次测量的薄膜工程师/科学家提供了基础。我们简要介绍了该仪器的衍射原理和描述,详细介绍了相关的操作模式。接下来,我们引入了薄膜表征必不可少的五种测量值:2次扫描,放牧的含量扫描,摇摆曲线,极图和方位角扫描(或ϕ扫描)。提供了选择适当的光学元件,安装和对齐样品以及选择扫描条件的实用准则。最后,我们讨论了数据分析的一些基础知识,并就数据呈现提供了建议。本文的目的是最终降低研究人员进行有意义的XRD分析的障碍,并在基础上建立基础,发现现有文献更易于访问,从而实现了更高级的XRD调查。
本教程的目的是对线性量子控制系统进行简要介绍。首先介绍线性量子控制系统的数学模型,然后给出一些基本的控制理论概念,例如稳定性、可控性和可观测性,这些概念与量子信息科学中的几个重要概念密切相关,例如无退相干子系统、量子非破坏变量和反作用规避测量。之后,介绍量子高斯态,特别是,介绍了一种信息论不确定性关系,它通常比众所周知的海森堡不确定性关系为混合高斯态提供更好的界限。介绍了量子线性系统的量子卡尔曼滤波器,它是经典(即非量子力学)线性系统的卡尔曼滤波器的量子类比。记录了量子线性系统的量子卡尔曼正则分解,并通过最近的实验说明了其应用。由于单光子态和多光子态是量子信息技术中的有用资源,因此本文介绍了量子线性系统对这些类型输入的响应。最后,简要介绍了量子线性系统的相干反馈控制,并使用最近的实验证明了量子线性系统和网络理论的有效性。