图2用于循环肿瘤细胞(CTC)基于液体活检的基于液滴的微流体。(a)使用交叉芯片进行CTC隔离的实验设置。根据CC的条款通过许可证复制。67版权所有2019,Ribeiro -Samy等。67(b)单个细胞水平上点突变分析的流动。经许可复制。68版权2021,Elsevier。 (c)方案说明显示了基于声学液滴定位技术的多功能酶 - 响应性GNP芯片,用于捕获和释放单个CTC的需求。 经许可复制。 69版权所有2019,美国化学学会。 (d)数字WGS平台的设计和操作。 根据CC的条款复制了NC许可证。 70版权所有2019,Ruan等。 70(e)数字 - rna -seq的示意图。 经许可复制。 77版权2020,美国化学学会。 (f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。 根据PANS许可条款复制。 80版权所有2018,Dhar等。 80(g)基于虚拟液滴的SCPS平台的总体工作原理。 经许可复制。 81版权2020,Elsevier。 (H)基于配对芯片的单个细胞免疫测定的工作原理。 经许可复制。 85版权2022,美国化学学会。 根据CC的条款复制了NC许可证。68版权2021,Elsevier。(c)方案说明显示了基于声学液滴定位技术的多功能酶 - 响应性GNP芯片,用于捕获和释放单个CTC的需求。经许可复制。69版权所有2019,美国化学学会。 (d)数字WGS平台的设计和操作。 根据CC的条款复制了NC许可证。 70版权所有2019,Ruan等。 70(e)数字 - rna -seq的示意图。 经许可复制。 77版权2020,美国化学学会。 (f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。 根据PANS许可条款复制。 80版权所有2018,Dhar等。 80(g)基于虚拟液滴的SCPS平台的总体工作原理。 经许可复制。 81版权2020,Elsevier。 (H)基于配对芯片的单个细胞免疫测定的工作原理。 经许可复制。 85版权2022,美国化学学会。 根据CC的条款复制了NC许可证。69版权所有2019,美国化学学会。(d)数字WGS平台的设计和操作。根据CC的条款复制了NC许可证。70版权所有2019,Ruan等。70(e)数字 - rna -seq的示意图。经许可复制。77版权2020,美国化学学会。(f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。根据PANS许可条款复制。80版权所有2018,Dhar等。80(g)基于虚拟液滴的SCPS平台的总体工作原理。经许可复制。81版权2020,Elsevier。(H)基于配对芯片的单个细胞免疫测定的工作原理。经许可复制。85版权2022,美国化学学会。根据CC的条款复制了NC许可证。(i)使用MA芯片从患者液体活检中分离出代谢活性细胞的实验工作流程。87版权2020,Rivello等。87(j)使用滴剂 - 需求喷墨打印技术和MALDI MS的开放空间平台中基于代谢的捕获和分析肿瘤细胞的插图。经许可复制。88版权2021,美国化学学会。
细胞间差异在微生物群落中存在无处不在。这种单独的异质性,通常是在细胞表型功能(例如抗生素耐药性)中ipest的人,对于确定MI Crobial群落的命运至关重要。然而,由于其巨大的多样性和复杂的细胞相互作用,研究微生物群落中这种异质性仍然是一个重大挑战。在这里,我们回顾了微流体技术在单细胞水平上检测,操纵和分类微生物种群的最新进展,这显着提高了我们对微生物行为及其在微生物生态系统中的作用的理解。我们将通过无标记的检测方法(包括光学成像和拉曼光谱)来强调微流体系统,因为它们在研究现实世界微生物群落方面具有优势。我们将在新兴应用中展示这些技术,包括快速诊断病原体和抗生素耐药性,趋化性和拉曼激活的细胞排序,以搜索具有理想表型功能的天然微生物细胞。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
摘要:微流体技术通过将流体动力学的原理与化学,物理,生物学,材料科学和微电子学的技术合并来彻底改变了装置的制造。微流体系统操纵少量的流体,以执行从化学合成到生物医学诊断的应用。低成本3D打印机的出现彻底改变了微流体系统的发展。用于测量分子,3D打印提供具有成本效益,时间和易于设计的好处。在本文中,我们提供了一个全面的设计,用于创建3D打印的微流体免疫阵列的设计,优化和验证的综合教程,以对多种蛋白质生物标志物进行超敏感性检测。目标是开发护理阵列,以确定侵袭性癌症的五个蛋白质生物标志物。设计阶段涉及定义微通道,试剂室,检测井以及优化参数和检测方法的尺寸。在这项研究中,阵列的物理设计经过了多次迭代以优化关键特征,例如开发开放式检测井以均匀的信号分布和用于覆盖测定期间孔的ap。然后,进行了完全信号优化,以实现灵敏度和检测极限(LOD),并生成校准图以评估线性动态范围和LOD。生物标志物之间的特征变化强调了对量身定制的测定条件的需求。尖峰恢复研究确认了测定的准确性。总的来说,本文展示了设计3D打印的微流体免疫阵列所涉及的方法,严格和创新。优化的参数,校准方程以及灵敏度和准确性数据为生物标志物分析中的未来应用贡献了有价值的指标。
作者的完整列表:沉,Yingnan;普渡大学(Purdue University),机械工程Gwak,Hogeeong;普渡大学(Purdue University),机械工程汉(Bumsoo);普渡大学,机械工程
稀土元素(REE),由灯笼(从灯笼到lutetium)以及Scandium and Yttrium组成,是许多可持续能量技术(例如磁铁)的重要成分,例如在硬盘,电动汽车,电动汽车和手机中 - 室温超级效率,以及高效的轻型功能[1]。当前提取和纯化这些元素的方法,利用环境有害的化学物质,并具有大量的碳足迹[2]。我们旨在利用生物学来创建一个更清洁,可持续的REE纯化过程。已经发现,细菌在其膜上包含许多位点,这些位点对REE对其他元素具有特异性,并且对其他REE的某些REE具有特异性[3,4]。我们计划将V. natriegens的基因组诱变,然后进行高通量筛选,以查找具有更改某些REE而不是其他REE的菌株。我们正在利用CNF来构建微流体液滴生成和排序设备,以进行此高通量筛选。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
A.O.实验室“ Antonio and Big and C. Arrigo”,威尼斯16,15121,意大利亚历山大; valentina.pizzo@ospedale.al。); castaldosal90@gmail.com(S.C。); edit@ospre.al.it(E.S.); cbara@ospedale。);标记。);2部门创新(Dairi),A.O。 “ SS。 Antonio和Biago和C. Arrigo”,Venezia 16,15121意大利亚历山大;牺牲。 ); aroveta@ospedale。 ); 3东部皮埃蒙特大学科学技术创新系(DISIT),意大利亚历山大市,迈克尔11号; mary.gerbino99@gmail.com2部门创新(Dairi),A.O。“ SS。Antonio和Biago和C. Arrigo”,Venezia 16,15121意大利亚历山大;牺牲。); aroveta@ospedale。); 3东部皮埃蒙特大学科学技术创新系(DISIT),意大利亚历山大市,迈克尔11号; mary.gerbino99@gmail.com
分离和鉴定分子和生物分子,例如核酸,蛋白质和复合流体的多糖,这对于各种应用中的未满足需求而言很重要。通常,已经开发出许多不同的分离技术,包括色谱,电泳和磁载体,以精确地识别靶分子。但是,这些技术既昂贵又耗时。“实验室芯片”系统,每个设备成本较低,快速分析能力和最少的样品消耗似乎是分离颗粒,细胞,血样和分子的理想候选者。从这个角度来看,在过去的二十年中,已经开发了不同的基于微流体的技术,以分离具有不同起源的样本。在这篇综述中,通过被动,主动和混合方法的“实验室”方法进行了全面讨论,用于在过去十年中开发的生物分子分离。由于领域中种类繁多,因此无法覆盖该主题的每个方面。因此,本综述论文涵盖了通常用于生物分子分离的被动和主动方法。然后,突出了对复杂方法的合并研究。近年来,人们的聚光灯还将散发出分离成功的优雅,其余文章探讨了这些成功率如何允许新技术的发展。
卵巢癌死亡的最重要原因是该疾病的晚期诊断。卵巢癌的标准治疗方法包括基于铂的手术和化学疗法,这与人体的副作用有关。由于临床症状的非特异性性质,需要开发一个以早期检测到该疾病的平台。近几十年来,微流体设备和系统的进步为诊断卵巢癌提供了一些优势。使用专业技术设计和制造新平台可能是改善这组DISES的预防,诊断和处理的重要一步。芯片微流体设备在癌症研究中越来越多地用作有前途的平台,重点是该疾病的特定生物学方面。这篇综述着重于卵巢癌和微流体应用技术。此外,它讨论了微流体平台及其在推进卵巢癌诊断方面的潜在未来观点。