目前,基于高阶谐波发电(HHG)的台式超级紫外线(XUV,10-124 eV)和软X射线(从124 eV到几个KEV)辐射的台式超快来源显然是在对电子超时时间量表的行为方面的科学进步明显促进了科学进步。1–7这些来源成功的关键点依赖于结合极端和空间分辨率的独特能力,从而使超快动力学具有原子特异性和化学环境敏感性,直至达到了时间范围的时间域(1 as = 10-18 s)。除了在极端时间尺度上揭示动力学的惊人潜力外,HG技术仍在持续进展,旨在克服几个基本限制,从而极大地阻碍其应用。例如,HHG的显着较低的转化效率仍然代表一个主要问题,尤其是在Soft-X射线中
摘要简介:由于生物医学的最新进展和对疾病分子机制的日益了解,医疗保健方法趋向于预防和个性化医疗。因此,近几十年来,微流体系统等跨学科技术的利用显着增加,以提供更准确的高通量诊断/治疗方法。方法:在本文中,我们将回顾微流体技术的创新摘要,以改进个性化的生物分子诊断,药物筛选和治疗策略。结果:微流体系统通过提供可控的流体流动空间,细胞的三维生长和分子实验的小型化,成为个性化健康和治疗领域的有用工具。这些条件使得开展以下研究成为可能:疾病建模,药物筛选和提高诊断方法的准确性。结论:微流体设备由于能够以小样本量进行诊断测试、降低成本、实现高分辨率和自动化,已成为有前途的即时诊断 (POC) 和个性化医疗仪器。
摘要:组织培养物(尤其是脑类器官)的分析需要高度的协调、测量和监控。我们开发了一个自动化研究平台,使独立设备能够实现反馈驱动的细胞培养研究的协作目标。通过物联网 (IoT) 架构统一,我们的方法能够实现各种传感和驱动设备之间的持续通信交互,实现对体外生物实验的精确定时控制。该框架集成了微流体、电生理学和成像设备,以维持大脑皮层类器官并监测其神经元活动。类器官在定制的 3D 打印腔室中培养,这些腔室连接到商用微电极阵列以进行电生理学监测。使用可编程微流体泵实现定期进料。我们开发了计算机视觉液体体积估计方法,可实现高精度的抽吸培养基,并使用反馈来纠正培养基进料/抽吸循环期间微流体灌注的偏差。我们通过对小鼠大脑皮层类器官进行为期 7 天的研究验证了该系统,比较了手动和自动协议。自动化实验样本在整个实验过程中保持了强劲的神经活动,与对照样本相当。自动化系统可以每小时进行一次电生理记录,揭示了神经元放电率的显著时间变化,而这种变化在每天一次的记录中是观察不到的。
石墨烯场效应晶体管(GFET)由于其在生物分子信号扩增中的出色特性而被广泛用于生物传感,在临床诊断中具有高度敏感性和高温和护理测试的潜力。然而,复杂的制造步骤中的困难是GFET的进一步研究和应用的主要局限性。在这项研究中,引入了一种模块化制造技术,以在3个独立的步骤内构建微流体GFET生物传感器。纳入了低熔化的金属电极和复杂的流道,以维持石墨烯的结构完整性并促进后续的感应操作。实用的GFET生物传感器具有出色的长期稳定性,并且在各种离子环境中有效地表现。它还表现出高灵敏度和选择性,可在10 FM浓度下检测单链核酸。此外,当与CRISPR/CAS12A系统结合使用时,它促进了以1 FM浓度的核酸无扩增和快速检测。因此,据信这种模块化的微流体GFET可能会揭示在各种应用中基于FET的生物传感器的进一步发展。
近年来,基于微流体的纳米级药物输送系统已在精密纳米医学领域的突出。这一有趣的创新可以在严重疾病作为创伤性脑损伤的治疗中提供独特的治疗前景,这是一种潜在的致命疾病,在儿童时期很普遍。根据当前的科学研究,神经营养蛋白对于损伤的脑实质的愈合至关重要,尤其是脑衍生的神经营养因子(BDNF)可能具有显着的再生作用。为了解决与BDNF相关的药代动力学约束,进行了微流体辅助的BDNF负载固体脂质脂质纳米颗粒(BDNF-SLNS)的制造,并进行了评估后,配方表明,配方表明了最佳特征(190.3±10.1 nm),0.1 nm),pdi(0.1 nm),pdi(0.1 nm),0.180±0.180 @ - 优势( - 39.2±1.30 mV)。短期稳定性研究和溶血测定法验证了配方的生物相容性,而体外通透性分析显示,与9.31x10-6 cm/s相比,相比,包裹的BDNF(1.27x10 - 5 cm/s)的PAPP增加了。与普通的BDNF相比,使用BDNF-SLNS的基因产生和NOS mRNA水平的下降表明,与普通BDNF相比,降低了降低,从而证实了微富集型药物递送系统的熟练程度,作为先验和有价值的生物递送方法。
抽象的流体离子基质是成为实现神经形态回路的独特平台,其特征是它依赖于与大脑相同的水性培养基和离子信号载体。借助了离子尖峰电路的最新理论进步以及形成流体回忆录的锥体离子通道的动态电导,我们扩大了离子型电路中提出的神经元尖峰动力学的曲目。通过模型的电路包含带有双极表面电荷的通道,我们提取阶段爆发,混合模式尖峰,补品爆发和阈值可变性,所有这些都带有哺乳动物神经元典型范围内的尖峰电压和频率。由于典型的电导记忆保留时间在通道长度上的强烈依赖性,因此这些特征是可能的,使得时间表从单个尖峰到单个电路中多个尖峰的爆发不等。这些高级形式的神经元状尖峰支持探索水离子化作为神经形态回路的有趣平台。
I.执行摘要财团:Corvallis Microfluidics Technology Hub(COLMIC)www.cormictechhub.org关键技术焦点区域(KTFAS):高性能计算,高级能源技术,高级材料,高级材料和制造业,生物技术。公共技术平台:微流体,其中硅或其他材料中的微观通道携带少量液体用于热分布,分配,混合或分析。地理边界:科瓦利斯,俄勒冈州的小城市统计区(MSA)与MSA合作伙伴(波特兰 - 南通 - 希尔斯伯勒,奥尔 - 瓦勒;塞勒姆;或; eugene-springfield,或; eugene-springfield,or and; and and; and and and and and and and and and and and and and and; and; eugene-springfield,and and and and and and and and and; eugene-springfield,and and and and and and obaly MSA,奥尔巴尼 - 黎巴嫩,奥尔巴尼 - 黎巴嫩和美国土著社区。为什么要微流体?微流体将推动生长并创造半导体冷却(降低温度并提高综合电路的性能),连续流动处理(化学合成以降低成本,可持续提高新材料)和生物技术(以革新诊断,治疗和药物开发革命))。为什么Corvallis?四家大型区域公司(HP,英特尔,NVIDIA,Thermo Fisher Scientific)加入了Cormic,因为微流体对其期货至关重要。此外,俄勒冈州的硅森林围绕着科瓦利斯(Corvallis),波特兰是美国半导体制造业中最集中的基因座。俄勒冈州立大学(OSU),俄勒冈大学(UO)和俄勒冈州健康与科学大学(OHSU)的联合学术企业将促进专业知识,创新,初创企业和多样化的劳动力。为什么现在?谁会受益?半导体行业正在突然过渡到综合电路(ICS)的液体冷却。连续流动加工(CFP)正在取代化学和制药行业中的分批加工,从而加速发现具有相关经济和环境优势的新材料。生命科学研究人员已经证明了许多微流体设备,这些设备预示了诊断和治疗方面的革命性进步。但是,商业化需要进一步的创新。我们估计,到2033年,科尔米奇将创造5,000至12,000个工作岗位,在农村服务,服务不足的俄勒冈地区的就业率很大,女性和有色人种的就业率低于平均水平。
• SonyDADC 萨尔茨堡(制造) • Johnson and Johnson 贝尔斯威克/新不伦瑞克(研发/全球总部) • Philips 埃因霍温(研发) • IMT 瑞士(生产) • ST Microelectronics 米兰(研发) • National Panasonic 大阪(研发) • SIMTech 新加坡(研发/生产)鲁赫(研发) • Uni Twente/Micronit 恩斯赫德(研发) • UCSB/Stanford • UCSD/Illumina(总部) • Biomerieux(研发) • 中国科学院(中国) • 加州大学伯克利分校
空气耦合超声测试(ACU)是非破坏性测试(NDT)的开创性技术。虽然接触测试和流体浸入测试是许多应用中的标准方法,但ACU的采用率正在缓慢发展,尤其是在低超声频率范围内。这一发展的主要原因是很难产生高振幅超声波爆发,其设备足以在实验室环境之外应用。本文介绍了动力超声传感器,以解决这一挑战。这个新颖的空气声源使用Bissable Fuidic开关中声音喷射的流量不稳定,以生成超声波爆发,最高60 kHz,平均峰值压力为320 PA。强大的设计允许在不属于操作流体的不利环境中操作。非接触式跨传输实验是在四种材料上进行的,并与常规传感器的结果进行了比较。在第一次,这表明新型的流体超声传感器为NDT任务提供了合适的声学信号,并且具有进一步在工业应用中实施ACU的潜力。