摘要:近年来,在应用和解码神经活动在药物筛查,疾病诊断和脑部计算机相互作用中的编码和解码应用方面的进展激增。为了克服大脑复杂性的限制以及体内研究的伦理考虑,已经提高了整合微功能设备和微电极阵列的神经芯片平台,这不仅可以自定义体外神经元的生长路径,而且还可以监测和调节碎屑生长的专用神经网络。因此,本文回顾了整合微流体设备和微电极阵列的芯片平台的发展历史。首先,我们回顾了高级微电极阵列和微流体设备的设计和应用。之后,我们介绍了神经芯片平台的制造过程。最后,我们重点介绍了这种类型的芯片平台的最新进展,作为脑科学和神经科学领域的研究工具,重点是神经药理学,神经系统疾病和简化的脑模型。这是对神经芯片平台的详细而全面的评论。这项工作旨在实现以下三个目标:(1)总结此类平台的最新设计模式和制造方案,为开发其他新平台提供了参考; (2)在神经病学领域概括了芯片平台的几个重要应用,这将吸引科学家在领域的注意; (3)提出了整合微流体设备和微电极阵列的神经芯片平台的发展方向。
在翻译器官片平台上的气体控制(顶部):开发用于精密医学的ERIC Safai微芯片模型T-061 ERIC SAFAI微型胰腺癌模型T-062 Sophia Co \ Y独立式倾向示威者系统,用于实现自动细胞培养物的t-063 frreke inicimation t-rimcromimincrip ciciCAIMCORCORIMCORCORICTAIME (microEIT) for Real-Time Imaging of Biological Samples on Chip T-064 Chang Liu Training the Next Generation of Researchers in the Organ-on-Chip Field T-065 Silke Riegger Monitoring Neurosphere electrophysiological activity using a novel NeuroMPS with integrated micro electrodes T-066 Fulya Ersoy Formation of Matrigel Beads by Centrifugal Force for Organoid Growth T-067 Frederic Bottausci Microfluidic system for simultaneous culture of a two 3D models: pancreatic islet and a blood vessel T-068 Patrycja Baranowska Microfluidic device for EIS and optical monitoring of cells T-069 Lilia Bató Raman microspectroscopy for organ-on-chip applications: non-destructive analysis of intestinal epithelium functions T-070 Alessandra Calogiuri微型图案肝癌,用于研究Hering T-071 Denis denis Estrade可生物降解的可生物降解的辅助1D和2D肌肉细胞机械刺激器中有机体机械刺激的动量器 T-073 Jéssica Rodrigues de Paula Albuquerque Testicular Organ-On-Chip: a New Platform for Drug Testing and Spermatogonial Stem Cells Functional Studies T-074 Denis Pehlic Characterization Of 3d-Printed Device Providing Strain For Cortical Brain Organoids During Maturation T-075 Samah Abousharieha Human intestinal enteroids: the gateway to novel antivirals targeting enteric病毒和宿主免疫反应。在翻译器官片平台上的气体控制(顶部):开发用于精密医学的ERIC Safai微芯片模型T-061 ERIC SAFAI微型胰腺癌模型T-062 Sophia Co \ Y独立式倾向示威者系统,用于实现自动细胞培养物的t-063 frreke inicimation t-rimcromimincrip ciciCAIMCORCORIMCORCORICTAIME (microEIT) for Real-Time Imaging of Biological Samples on Chip T-064 Chang Liu Training the Next Generation of Researchers in the Organ-on-Chip Field T-065 Silke Riegger Monitoring Neurosphere electrophysiological activity using a novel NeuroMPS with integrated micro electrodes T-066 Fulya Ersoy Formation of Matrigel Beads by Centrifugal Force for Organoid Growth T-067 Frederic Bottausci Microfluidic system for simultaneous culture of a two 3D models: pancreatic islet and a blood vessel T-068 Patrycja Baranowska Microfluidic device for EIS and optical monitoring of cells T-069 Lilia Bató Raman microspectroscopy for organ-on-chip applications: non-destructive analysis of intestinal epithelium functions T-070 Alessandra Calogiuri微型图案肝癌,用于研究Hering T-071 Denis denis Estrade可生物降解的可生物降解的辅助1D和2D肌肉细胞机械刺激器中有机体机械刺激的动量器 T-073 Jéssica Rodrigues de Paula Albuquerque Testicular Organ-On-Chip: a New Platform for Drug Testing and Spermatogonial Stem Cells Functional Studies T-074 Denis Pehlic Characterization Of 3d-Printed Device Providing Strain For Cortical Brain Organoids During Maturation T-075 Samah Abousharieha Human intestinal enteroids: the gateway to novel antivirals targeting enteric病毒和宿主免疫反应。T-076 JANA VAN DYCKE在考虑FCRN回收途径T-077 Anne-katrin be Intestine-on-Chip模型中,用于抗体验证的微生物生理学模型,以改善易Immantical Intesinal Physentiip t-078 Rut-lopeun-rut-rut-in-rut-lopemoct toa-in-chip模型基于微生物组的疗法使用中吞吐量微流体设备
在过去的二十年中,微流体学取得了长足的进步,现在是时候对 2005 年出版的《微流体学导论》第一版进行认真的更新了。事实上,第二版不仅仅是一次更新。与第一版相比,它保留了相同的结构、相同的精神、相同的尝试,尽可能从物理角度深入、简单地解释事物,但它不能简化为更新。当前版本是对第一版的完全重写,并借鉴了过去二十年在该领域收集的大量信息。二十年来收集了如此多的信息。对该领域的愿景进行了如此多的修订。20 世纪 90 年代看似不可能的事情,十年后催生了一个重要的行业。这就是下一代测序 (NGS) 的情况。看似革命性的东西最终却令人失望。微流控技术的历史充满了梦想成真和有吸引力的证据被证明是错误的。让我们回到世纪之交。当时,微流控市场(即没有喷墨打印)规模很小,尽管经常有人宣称微流控技术将彻底改变二十一世纪,但人们对该技术是否有潜力在市场上站稳脚跟仍持怀疑态度。常识导致了这样一个理论,即在工业规模下,在没有泄漏、堵塞、气泡或不受控制的吸附的情况下,驱动流体通过微小通道是不可能的,而事实上,这是错误的。相反的观点认为,创建一个复杂、功能齐全的微流体设备很简单,这是不现实的。尽管如此,成功的微流体产品还是出现了,与此同时,该技术渗透到了越来越多的新领域。市场以两位数的速度稳步增长,如今已达到 170 亿美元。目前,每年售出数亿台设备。例如,每年有 120 万个用于基因测序的 Illumina 微流体流动池出货。与此同时,毛细现象、润湿、滑移和纳米流体传输等基本现象得到了更好的理解,或者在许多令人费解的情况下,只是得到了理解。多年来,该领域的早期愿景基于与微电子学的严格类比,逐渐转向一种新范式,其中微流体工具箱不再局限于 MOS-FET 替代品,而是采用了更广泛的材料和机制。
空气耦合超声测试(ACU)是非破坏性测试(NDT)的开创性技术。虽然接触测试和流体浸入测试是许多应用中的标准方法,但ACU的采用率正在缓慢发展,尤其是在低超声频率范围内。这一发展的主要原因是很难产生高振幅超声波爆发,其设备足以在实验室环境之外应用。本文介绍了动力超声传感器,以解决这一挑战。这个新颖的空气声源使用Bissable Fuidic开关中声音喷射的流量不稳定,以生成超声波爆发,最高60 kHz,平均峰值压力为320 PA。强大的设计允许在不属于操作流体的不利环境中操作。非接触式跨传输实验是在四种材料上进行的,并与常规传感器的结果进行了比较。在第一次,这表明新型的流体超声传感器为NDT任务提供了合适的声学信号,并且具有进一步在工业应用中实施ACU的潜力。
摘要:热管理是最苛刻的检测器技术和微电子学的未来的主要挑战之一。微流体冷却已被提议作为现代高功率微电子中热量耗散问题的完全集成解决方案。基于硅的微流体设备的传统制造涉及用于表面图案的先进的,基于面膜的光刻技术。此类设施的有限可用性阻止了广泛的开发和使用。我们演示了无掩模激光写作的相关性,以有利地替换光刻步骤并提供更原型的过程流。我们使用脉冲持续时间为50 ps的20 W红外激光器雕刻并钻出525 µm厚的硅晶片。阳极键与SIO 2晶片用于封装图案表面。机械夹紧入口/出口连接器完成了完全操作的微动设备。该设备的功能已通过热流体测量验证。我们的方法构成了一个模块化的微观分化解决方案,该解决方案应促进针对共同设计的电子和微流体的新概念的原型研究。
摘要:热管理是要求最高的探测器技术以及未来微电子技术面临的主要挑战之一。微流体冷却已被提议作为现代高功率微电子散热问题的全面解决方案。传统的硅基微流体设备制造涉及先进的基于掩模的光刻技术,用于表面图案化。此类设施的有限可用性阻碍了其广泛开发和使用。我们展示了无掩模激光写入的相关性,它可以有利地取代光刻步骤并提供更适合原型的工艺流程。我们使用脉冲持续时间为 50 ps 的 20 W 红外激光器雕刻和钻孔 525 µ m 厚的硅晶片。使用阳极键合到 SiO 2 晶片来封装图案化表面。机械夹紧的入口/出口连接器使完全可操作的微冷却装置得以完成。该装置的功能已通过热流体测量验证。我们的方法构成了一个模块化微加工解决方案,可以促进共同设计的电子和微流体新概念的原型研究。
摘要 免疫系统是一个复杂的专门细胞网络,它们协同工作,抵御入侵病原体和组织损伤。该网络的失衡通常会导致过度或缺失的免疫反应,从而导致过敏、自身免疫性疾病和癌症。许多机制及其调节仍不清楚。免疫细胞高度多样化,免疫反应是大量分子和细胞在时间和空间上相互作用的结果。传统的批量方法通常容易因返回群体平均结果而错过重要细节。免疫学需要测量单个细胞并研究免疫细胞与其环境的动态相互作用。微系统和微工程领域的进步催生了微流控领域及其在生物学中的应用。微流控系统能够精确控制飞升到纳升范围内的小体积。通过控制装置的几何形状、表面化学和流动行为,微流体技术可以为具有时空控制的单细胞研究创建精确定义的微环境。这些特性对于单细胞分析非常有利,也使微流体装置成为研究复杂免疫系统的有用工具。此外,微流体装置可以实现高通量测量,从而能够对复杂系统进行深入研究。微流体技术已用于广泛的生物学应用,从单细胞基因组学、细胞信号传导和动力学到细胞 - 细胞相互作用和细胞迁移研究。在这篇综述中,我们概述了最先进的微流体技术、它们在单细胞免疫学中的应用、它们的优点和缺点,并对单细胞技术在研究和医学中的未来进行了展望。
摘要:天然聚合物由于其内在的生物相容性和仿生性,已在很大程度上被研究为组织工程应用的脚手架材料。传统的脚手架制造方法提出了几个局限性,例如使用有机溶剂,获得非均匀结构,孔径的变化以及缺乏孔隙互连性。这些缺点可以根据使用微流体平台的创新和高级生产技术来克服这些缺点。液滴微流体和微流体旋转技术最近在组织工程领域中发现了可用于生产微粒和微纤维的应用,这些微粒和微纤维可以用作支架或三维结构的基础。与标准制造技术相比,基于微流体的技术具有多种优势,例如获得具有均匀尺寸的颗粒和纤维的可能性。因此,可以获得具有极为精确的几何形状,孔分布,孔相互连接性和均匀孔径的支架。微流体也可以代表一种更便宜的制造技术。在这篇综述中,将说明基于天然聚合物的微粒,微纤维和三维支架的微流体制造。还将提供其在不同组织工程领域的应用概述。
大多数此类系统都需要昂贵的高精度光学设备,如激光器、光谱仪和嵌入在设备中的光纤。[19,22] 细胞计数器还依靠加压管系统在微通道中聚焦流体动力流。[23,24] 因此,这些传感器受到其结构刚性和繁琐的光电装置的限制。这使得这些传感器不适合在临床场景中使用,例如在结肠镜检查期间,因为结肠镜检查需要在曲折区域中连续移动,并且需要实时收集数据(即检测出血)。在设计结合软光学传感的 LOC 设备方面已经取得了进展。[25 – 27] 许多光流体传感器已经成功地将聚合物波导集成到微流体中的光中
用聚焦的连续波激光照射水溶液会在液体中产生强烈的局部加热,从而导致气泡成核,也称为热空化。在气泡生长过程中,周围的液体通过喷嘴从限制微流体通道中排出,形成射流。使用超快速成像技术对产生的液体射流的特性进行成像。在这里,我们提供了射流形状和速度的现象学描述,并将它们与边界积分数值模型进行了比较。我们定义了参数范围、变化的射流速度、锥度几何形状和液体体积,以实现最佳打印、注射和喷雾应用。这些结果对于基于微流体热空化设计节能无针喷射器非常重要。