Saptarshee Mitra,Raphael Paris,Laurent Bernard,RémiAbbal,Pascal Charrier等。应用于海啸沉积物的X射线图:优化的图像处理和粒度,粒度,粒度形状和沉积物的定量分析3D。海洋地质学,2024,470,pp.107247。10.1016/j.margeo.2024.107247。hal-04514532
(5)Iliwerung-Hobal(6)Banuawuhu(7)Gamalama(8)Iron Kie(9)Gamkonora(10)Rokatenda(11)Rinjani-Samalas(12)Tambora(12)Tambora(13)Teon
1.3使用培根的沉积物芯的年龄深度模型为沉积物核的年龄至深度模型,我们使用了程序培根,版本2.3.9.1 17在称为R 18的统计软件中安装为包装。对于每个核心,我们执行了两个模型:模型1包括所有或大多数日期(在下面的每种情况下指定),没有先前的假设。在模型2中,我们使用了选项hiatus.depths = 8.2 ka层的下边界和slump = 8.2 ka层的厚度,并在层中发现的丢弃日期可以重新沉积。我们将裂缝深度放在层下方的位置,使沉积物中有间隙或破裂,在层的深度处凹陷,允许给定深度之间的瞬时沉积。培根程序的文档可在(https://chrono.qub.ac.uk/blaauw/manualbacon_2.3.pdf,上一次访问2023/12/06)
摘要在单个光子激光雷(SPL)中,激光重复率设置了可以明确恢复的最大距离。常规SPL通过降低重复率来扩展此最大记录深度;但是,较慢的采集速度限制了接收到的光子的数量,这可能是不可能跟踪快速移动对象的。受到Modulo感测成功的启发,我们利用了典型轨迹的平滑度,以实现超出明确范围的远程跟踪。尽管SPL自然地获得了模量时间的测量时间,但它引入了几个挑战,包括随机抽样时间,多个噪声源和绝对距离不确定性 - 当前的模型传感文献无法解决这些挑战。因此,我们提出了一种直接在模量样品上运行的插值和denoising方法。我们基于变化的反射性降落性进一步消除了绝对距离。蒙特卡洛模拟考虑了实际条件下的逼真的轨迹,表明,如果适当地解开,我们的深度估算的归一化平方误差估计,相对于重复期会导致不模棱两可的激光雷达设置,我们的深度估计值降低了20 dB以上。
关键基础设施、沿海地区道路网络、其他易受海啸影响的基础设施以及海啸地区的工业、商业、旅游、教育、卫生、住房、金融、宗教和文化设施的位置;识别潜在的疏散路线和安全区域;中等分辨率数字高程模型
无纠缠非局域性 (NLWE) 是多部分可分离状态的量子态鉴别中发生的一种非局域现象。在正交可分离状态的鉴别中,当无法通过局部操作和经典通信完美区分量子态时,使用术语 NLWE。在这种情况下,NLWE 的发生与正在制备的量子态的非零先验概率无关。最近发现,在非正交可分离状态的最小误差鉴别中,NLWE 的发生可能取决于非零先验概率。在这里,我们表明,即使在最佳无歧义鉴别中,NLWE 的发生也可能取决于非零先验概率。我们进一步表明,即使只有一个状态可以无误差地进行局部鉴别,NLWE 也可以与非零先验概率无关地发生。我们的结果为根据量子态鉴别对多部分量子态集进行分类提供了新的见解。
摘要——波多黎各岛海岸最近一次观测到的海啸发生在 1918 年 10 月 11 日,当时莫纳海峡发生了 7.2 级地震。这场地震引发的海啸主要影响了该岛的西北部海岸。海啸后调查的上升值表明海浪高达 6 米。关于海啸源头的争议导致了几种数值模拟,其中断层破裂或海底滑坡是海啸的最可能原因。在这里,我们跟进了以前对地震引发的波多黎各西海岸海底滑坡海啸的模拟。我们以前研究的改进包括:(1)更高分辨率的水深测量;(2)专门为海啸开发的 3D-2D 耦合数值模型; (3) 使用具有双向嵌套功能的非静水力学数值模型 NEOWAVE (非静水力学海洋波演变);(4) 进行综合能量分析以确定海啸波完全发展的时间。三维 Navier-Stokes 模型海啸解采用 Navier-Stokes 算法,具有两种流体(水和滑坡)的多个界面,用于确定海底滑坡产生的初始波浪特性。使用 NEOWAVE 使我们能够解决沿海淹没、波浪传播和详细的爬高问题。我们的研究结果与以前的研究一致,其中海底滑坡被认为是海啸的最可能来源,并且水深测量分辨率的提高使沿海地区被淹没的情况与海啸后调查的值相吻合。我们独特的能量分析表明,大部分波浪能被隔离在波浪生成区域,特别是在滑坡附近的深度,并且一旦初始波浪从生成区域传播,其能量就会开始稳定。