量子秘密共享(QSS)协议没有纠缠,从而表现出很高的安全性,该协议由于量子力学的特征而显示出很高的安全性。但是,根据定量安全性分析,比较此类协议的安全性仍然是一个挑战。基于我们先前使用单量子器和两级统一操作的协议的安全分析工作,本文考虑了具有单个Qutrits和三级统一操作的QSS协议。在我们提出的贝尔州攻击下,根据不同三级单一操作的定量安全分析在一步和两步的情况下分别提供。最后,为设计和实施此类QSS协议得出重要结论。该方法和结果也可能有助于分析基于单一操作的其他高级量子密码学方案的安全性。
我们考虑统一量子通道的过程断层扫描。给定对作用于D维Qudit的未知统一通道的访问,我们旨在输出对ε-close的统一的经典描述,即ε-close的钻石规范中未知的统一。我们使用未知通道的O(D 2 /ε)应用来设计算法实现误差ε和仅一个Qudit。这改善了先前的结果,这些结果使用O(D 3 /ε2)[通过标准过程断层扫描]或O(D 2。< /div>)5 /ε)[Yang,Renner和Chiribella,Prl 2020]应用。为了显示此结果,我们引入了一种简单的技术来“引导”一种算法,该算法可以通过Heisenberg缩放来产生可以产生εError估计的恒定估计值。最后,我们证明了一个互补的下限,即使访问未知统一的逆版本或受控版本,估计也需要ω(D 2 /ε)应用。这表明我们的算法既具有最佳的查询复杂性又具有最佳空间复杂性。
在基于酉门的量子设备上实现非酉变换对于模拟各种物理问题(包括开放量子系统和次归一化量子态)至关重要。我们提出了一种基于膨胀的算法,使用仅具有一个辅助量子位的概率量子计算来模拟非酉运算。我们利用奇异值分解 (SVD) 将任何一般量子算子分解为两个酉算子和一个对角非酉算子的乘积,我们表明这可以通过 1 量子位膨胀空间中的对角酉算子来实现。虽然膨胀技术增加了计算中的量子位数,从而增加了门的复杂性,但我们的算法将膨胀空间中所需的操作限制为具有已知电路分解的对角酉算子。我们使用此算法在高保真度的量子设备上准备随机次归一化两级状态。此外,我们展示了在量子设备上计算的失相通道和振幅衰减通道中两级开放量子系统的精确非幺正动力学。当 SVD 可以轻松计算时,所提出的算法对于实现一般的非幺正运算最为有用,在嘈杂的中型量子计算时代,大多数运算符都是这种情况。
b'我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依曼熵、量子 R\xc2\xb4enyi 熵、迹距离和 \xef\xac\x81delity。所提出的算法在低秩情况下的表现明显优于最知名的(甚至是量子的)算法,其中一些算法实现了指数级加速。特别是,对于秩为 r 的 N 维量子态,我们提出的用于计算冯·诺依曼熵、迹距离和 \xef\xac\x81delity(加性误差 \xce\xb5 内)的量子算法的时间复杂度为 \xcb\x9c O r 2 /\xce\xb5 2 、 \xcb\x9c O r 5 /\xce\xb5 6 和 \xcb\x9c O r 6 。 5 /\xce\xb5 7 . 5 1 。相比之下,已知的冯·诺依曼熵和迹距离算法需要量子时间复杂度为 \xe2\x84\xa6( N ) [AISW19,GL20,GHS21],而最著名的 \xef\xac\x81delity 算法需要 \xcb\x9c O r 21 . 5 /\xce\xb5 23 . 5 [WZC + 21]。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。它是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。特别是,我们基于强大的量子奇异值变换(QSVT)[GSLW19],引入了一种用于密度算子及其(非整数)正幂的特征值变换的新技术。我们的技术相对于现有方法的优势在于,不需要对密度算子进行任何限制;与之形成鲜明对比的是,以前的方法通常需要密度算子的最小非零特征值的下限。此外,我们还提供了一些独立感兴趣的技术,用于(次规范化)密度算子的迹估计、线性组合和特征值阈值投影仪,我们相信这些技术在其他量子算法中会很有用。'
[1] K. Mochizuki, D. Kim, 和 H. Obuse, Phys. Rev. A 93 , 062116 (2016)。[2] L. Xiao, X. Zhan, ZH Bian, KK Wang, X. Zhang, XP Wang, J.Li, K. Mochizuki, D. Kim, N. Kawakami,Y. Wi, H. Obuse, B. Sanders, P. Xue, Nature Phys. 13 , 1117 (2017)。[3] L. Xiao, X. Qin, K. Wang, Z. Bian, X. Zhan, H. Obuse, B.Sanders, W. Yi, P. Xue, Phys. Rev. A 98 , 063847 (2018)。[4] K. Mochizuki, D. Kim, N. Kawakami, 和 H. Obuse, Phys. Rev. A, 102 , 062202 (2020)。[5] M. Kawasaki、K. Mochizuki、N. Kawakami 和 H. Obuse, Prog. Theor. Exp. Phys. 2020 , 12A105 (2020)。[6] N. Hatano 和 H. Obuse, Annals of Physics 435, 168615 (2021)。[7] T. Bessho、K. Mochizuki、H. Obuse 和 M. Sato, Phys. Rev. B 105 , 094306 (2022)。[8] R. Okamoto、N. Kawakami 和 H. Obuse(准备中)。
虽然在本研究中我们模拟了经典计算机中的量子计算,但我们应该注意到量子力学测量是随机的,因此,每次评估期望值时我们都将进行1000次测量。对于每种相互作用强度,进行50次基态能量估计,并得到它们的中位数和百分位数。另外,在本研究中,我们采用了Nakanishi等人[31]提出的序贯最小优化(SMO)方法进行参数优化。SMO方法具有以下优点:收敛速度更快、对统计误差具有鲁棒性、无需超参数优化。SMO方法基于这样一个事实,即期望值表示为具有一定周期的三角函数的简单和。更多详细信息可参见参考文献[31]。
黑洞信息(丢失)悖论是一个有关黑洞蒸发和演化过程的幺正性难题的问题(见霍金[9],或Chakraborty和Lochan[4]、Harlow[8]、Polchinski[16]和Marolf[10]的评论)。幺正性守恒的假设(尤其是我们的假设)意味着几种一般的情况。例如,可以采用这样的假设(我们也这样做),即信息在黑洞蒸发过程中(以某种方式)逐渐释放。然而,这个观点(显然和其他观点一样)需要某种令人信服的物理机制,或者(在缺乏机制的情况下)至少需要某种可行的信息传输抽象算法。研究该悖论的一个显而易见的方法是,从特定的物理机制中抽象出问题,从量子比特的角度分析问题。在文献中,我们可以找到许多量子比特模型,它们或多或少成功地再现了黑洞演化的各个步骤(例如,参见 Broda [ 2 , 3 ]、Giddings [ 6 , 5 ]、Giddings 和 Shi [ 7 ]、Mathur [ 11 , 12 ]、Mathur 和 Plumberg [ 13 ]、Osuga 和 Page [ 14 ] 或 Avery [ 1 ] 的评论)。不幸的是,在所有这些模型中,因果关系这一重要问题似乎都没有引起应有的重视,因此没有明确排除超光速通信的可能性。与此相反,我们目前的处理方式优先考虑因果关系。更准确地说,在我们的方法中,我们严格控制通过量子比特传输的信息的方向。
Guillaume Aubrun和StanisławSzarek,Alice and Bob Meet Banach:渐近几何分析和量子信息理论的界面,剑桥,2019年。
过去十年,量子计算和信息处理因比经典算法具有更快的加速性能而引起了人们的广泛关注。从数学上讲,一个整体的量子操作可以看作是在构建量子网络中对输入量子比特进行的一系列幺正变换。实现量子计算的物理系统有很多,如离子阱、约瑟夫森结、氮空位中心等[1]。在这些物理系统中,线性光学方案最具吸引力,因为量子信息载体是光子,而光子可能不存在退相干[2,3]。当对输入光子进行量子计算时,基本量子比特通常由两个正交模式或两个偏振通道中的单光子来准备。为了在量子信息处理中产生所需的演化,每个相应的量子比特操作由一些简单的光学元件或它们的组合来实现,如分束器、移相器和波片[4,5]。单量子比特操作属于 U(2) 变换类,此类变换已在理论上进行了讨论,并通过这些元件的组合在实验中实现了 [2–6]。然而,使用传统线性光学元件的物理实现似乎体积庞大,难以集成到物理系统小型化,因此非常希望简化当前的光学实现。另一方面,超表面(单层或多层超材料结构)可以平坦、紧凑地实现经典光学区域中不同光学元件的小型化 [7,8]。由于在制作任何量身定制的共振超材料结构时都具有丰富的自由度,它们已经应用于需要复杂自由度的不同场景,包括全息图 [9,10]、光学平面透镜 [11,12]、斯托克斯偏振仪 [13–15] 和模拟计算 [16–18]。具体来说,超材料已用于执行信息或图像处理。通过将超材料像素化为一组离散结构,这些“数字超材料”可进一步用于执行不同的数学运算,如傅里叶变换和微分[15-22]。扩展到量子光学领域,超表面可用于替代传统的线性光学元件