光子量子信息处理是量子技术的主要平台之一 1 – 5,它主要依靠光量子干涉来产生不可或缺的有效光子 - 光子相互作用。然而,由于光子的玻色子性质 7 和传统酉光学元件的受限相位响应 8、9,这种有效的相互作用从根本上局限于聚束 6。在这里,我们提出并通过实验证明了非酉超表面实现的光量子干涉的新自由度。由于独特的各向异性相位响应产生了两个极端的本征操作,我们展示了对两个单光子有效相互作用的动态和连续控制,使得它们表现出玻色子聚束、费米子反聚束或任意中间行为,超出了它们固有的玻色子性质。这种量子操作为基础的量子光物质相互作用和用于量子通信、量子模拟和量子计算的创新光子量子装置打开了大门。超材料是一种具有亚波长元素的结构化材料,可以实现自然界中无法找到的波响应。通过定制超材料,人们已经展示了诸如负折射率、亚衍射成像和隐形斗篷等前所未有的特性 10 – 13 。超表面(二维超材料)使我们能够利用平面光学任意定制经典光的波前和传播 14 – 18 。同时,光子是极好的量子信息载体,因为它们具有长相干时间、室温稳定性、易于操纵和光速信号传输。使用单光子源、分束器、移相器和单光子探测器的量子光子学一直是量子计算、量子模拟和量子通信的主要平台之一 1 – 5 。因此,将超材料无与伦比的光控制与量子光学相结合,可以带来量子信息应用的全新可能性 19 – 22 。光子量子信息处理应用(如线性光学量子计算 1 、玻色子采样 23、24、量子行走 25 和量子通信 26)的核心操作单元是量子双光子干涉 (QTPI)。分束器是此量子操作的关键元素。当两个无法区分的单光子同时到达 50:50 分束器的两个输入端口时,QTPI 表现为洪-欧-曼德尔 (HOM) 效应 6 。在原始的 HOM 实验中,两个光子总是聚集在一起,并以相同的输出离开分束器
摘要 本文研究了量子态可能具有的各种被认为特有的“量子”性质(纠缠、非局域性、可控性、负条件熵、非零量子不一致性、非零量子超不一致性以及语境性)及其对立面。本文还在以下意义上考虑了它们的“绝对”对应物:如果给定状态在任意幺正变换后仍然具有给定属性,则它绝对地具有该属性。总结了所列属性之间以及它们的绝对对应物之间的已知关系。证明了唯一绝对具有零量子不一致性的两量子比特状态是最大混合态。最后,讨论了有关“经典”和“量子”这两个术语的概念问题。
我们可以通过不同的g实现纠缠阶段过渡吗?在上面的方程式中,H 1和H 2都是Hermitian Hamiltonians。更具体地,在本文中,我们考虑以下相互作用:H 1是一个汉密尔顿人,描述了不同位点与H 2之间的相互作用是每个位点上均定义的Hamiltonian。h 2可以描述现场自由度与外部场的耦合。对于这种非自然动力学,在极限G = 0中,我们期望稳态通常会饱和到具有体积定律缩放的高度纠缠状态,而在极限g→∞中,这将变成纯粹的想象进化,稳态是零纠缠熵的微不足道的乘积。在强烈相互作用的系统中,如果存在有限的g,那么是否存在相变。为了解决上述问题,我们考虑了由Sachdev-Ye-Kitaev(Syk)模型[18,19]构建的一维(1D)非自动动力学,并探索其中可能的相变。
在量子信息理论中,对于任何维度为 n 的正整数,混合酉量子信道是那些可以用 n × n 复酉矩阵的共轭凸组合表示的线性映射。我们考虑任何此类信道的混合酉秩,它是这种形式表达所需的最少不同酉共轭个数。我们确定了混合酉信道的混合酉秩 N 和 Choi 秩 r 之间的几种新关系,Choi 秩等于该信道的 Kraus 表示所需的最少非零项个数。最值得注意的是,我们证明了对每个混合酉信道都有不等式 N ≤ r 2 − r + 1 满足(当 r = 2 时,等式 N = 2 也是如此),并且我们展示了已知的第一个满足 N > r 的混合酉信道的例子。具体来说,我们证明对于无穷多个正整数 d (包括每个素数幂 d ),存在 Choi 秩为 d + 1 和混合酉秩为 2 d 的混合酉信道。我们还研究了混合酉 Werner-Holevo 信道的混合酉秩。
在量子信息理论中,量子通道表示系统中离散时间的变化,在理想意义上,这些变化可以通过物理过程实现。从数学上讲,量子通道用完全正且保迹的线性映射表示,形式为Φ:L(C n)→L(C m),其中L(C n)是从C n到自身的线性映射或算子集,对于L(C m)也是如此。如果系统在通道Φ表示的动作之前的状态用密度算子ρ∈L(C n)表示,那么通道动作后的状态由密度算子Φ(ρ)∈L(C m)给出。本文主要研究n = m的通道,它们表示离散时间变化保持物理系统大小的常见情况。 (量子通道的输入和输出系统的大小由底层空间 C n 的维度反映
场,这样的下限并不能提供太多关于完成这项任务最多需要多少时间的见解。因此,非常需要 T 的上限。这样的上限应该取决于目标幺正变换、描述所考虑量子系统的哈密顿量、可用于实现目标变换的控制数量以及可能的约束,比如控制场中的能量和带宽。显然,如果描述 d 维量子系统的哈密顿量的每个矩阵元素都可以瞬间任意控制,则幺正群 U(d) 中的每个幺正变换都可以通过控制每个矩阵元素的 d2 个(无约束)经典场瞬间实现。但是,如果我们对所考虑的系统只有受限的访问,会怎么样呢?有多少个控制以及哪些控制允许在最多 O(poly(d)) 的时间内实现每个 Ug∈U(d)?这里我们证明,如果描述 d 维量子系统的哈密顿量的对角线元素可以通过经典场进行一般控制,并且如果该系统可由这些场控制,则实现每个幺正操作的时间最多为 O(d3)。然而,我们注意到,对于由 n 个量子比特(即 d=2n)组成的量子比特系统,我们的上限关于 n 呈指数增长。这并不奇怪,因为实现一般幺正变换的时间 T 会随着量子比特的数量而呈指数增长,这可以追溯到大多数幺正操作无法有效实现的事实,即时间会随着量子比特的数量而呈多项式增长 [2]。有关时间最优控制和量子计算的进一步阅读,我们参考了开创性著作 [ 3 , 4 ],而量子比特系统的 T 的上限则在 [ 5 ] 中得到开发。虽然在这项工作中我们主要关注由描述四维量子系统的一组基态 {| n ⟩ } 确定的网络,但我们也考虑了将其推广到由量子比特组成的网络。这里关联图不是由两个键之间的耦合确定,而是由通过任意二体相互作用项耦合的量子比特确定。基于创建特定幺正变换所需的 CNOT 门数量 [ 6 – 8 ],我们还提供了 T 的上限,以使用 2 n 个局部控制在 -量子比特网络上实现给定的 U g。获得 T 上限的一种方法是找到与某些控制应用相对应的门序列,从而创建通用幺正变换。确定实现该序列所需的相应时间的上限,然后得出实现通用酉变换的上限。例如,该策略具有已成功应用于 -量子比特网络,以表征使用 2 n 个局部控制在最多多项式时间内实现的门集 [ 5 ]。这里我们基于 [ 5 ] 中提出的概念,并展示了由哈密顿量描述的 d 维量子系统
如今,我们正在生活许多科学家所说的,这是第二个量子转化。第一次量子革命的历史可以追溯到20世纪的前半叶,当时科学家理解了量子力学的基本规则,量子力学的基本规则是允许激光或晶体管(例如计算机的基本构建)之类的发明的基础。在过去的几年中,技术已验证到我们控制一个原子的地步,这意味着诸如叠加或纠缠之类的量子属性可用于构建新设备,尤其是量子计算机。量子计算的第一个思想是在八十年代初建立的,但是在过去的几年中,数学,材料科学和计算机科学的巨大进步已将量子计算从理论转变为现实。量子计算的主要思想依赖于存储信息的物理设备。量子计算使用物理系统,例如原子,超导电路或光子,从而允许创建classical状态的叠加。例如,电子可以处于两个级别的能量,即基态和激发状态,在每个状态下,我们可以将信息存储为0或1(例如经典计算中的位)。但是,量子力学允许物理状态处于叠加状态,因此我们可以同时拥有0和1。更确切地说,如果我们想象一个球并将0与北极相关联,而1将量子状态与球体表面的任何点相关联,那么这些点就是我们所说的量子。量子计算中的钻头类似物。。。这种将量子视为球体上的点的方式更准确,而不是同时说这两个状态0和1。量子计算比经典的最大优势是经典前面的量子系统的指数缩放。由于量子位可以代表两个位状态,因此n个量表可以代表2个位状态,并且这一事实允许用更少的资源来操纵更多信息。量子计算机有不同的物理实现(请参阅[NC00]第7章),但关键点是在量子系统中可以完成的操作是单一转换。从数学上讲,事实证明,量子计算可以由代表量子位的c 2 n中的向量描述,以及代表操作的统一组u(n)的元素(例如经典门不,xor。)。从这种计算新型算法与经典出现完全不同的新型算法的新方法中。另外,使用这些新算法,量子计算机可能能够有效地解决经典计算机无法解决的一些问题。最有希望的量子算法之一是Shor的算法[MON16],它允许求解有效的整数分解,这是一个经典的问题,属于复杂性类NP。其他有用的应用程序将