叶绿体ATP合酶包含质体和核遗传来源的亚基。为了研究这种复合物的协调生物发生,我们通过筛选绿色藻类衣原体中的新型ATP合酶突变体,通过筛选高光灵敏度。我们在这里报告了影响两个外围茎亚基B和B 0的突变体的表征,该突变体由ATPF和ATPG基因编码,以及三个鉴定核因子MDE1的独立突变体,这些突变体稳定叶绿体编码的ATPE mRNA所需的核因子MDE1。全基因组测序显示在ATPG的3 0 UTR中插入了转座子插入,而质谱显示在此敲低ATPG突变体中,功能性ATP合酶的一小部分积累。相反,通过CRISPR-CAS9基因编辑获得的敲除ATPG突变体,完全防止ATP合酶功能和积累,这也是在ATPF框架转移突变体中观察到的。与主要类囊体蛋白酶的FTSH1-1突变体穿越ATP合酶突变体将ATPH鉴定为FTSH底物,并表明FTSH显着促进了ATP合酶亚基的一致积累。在MDE1突变体中,不存在ATPE转录物完全阻止ATP合酶的生物发生和光合作用。使用嵌合ATPE基因营救ATPE转录本的积累,我们证明了一种新型的八度肽重复(OPR)蛋白MDE1遗传靶向ATPE 5 0 UTR。从主要内部生物生物症(〜1.5 Gy)的角度来看,将MDE1募集到其ATPE靶标招募了一个核/叶绿体相互作用的典范,这些相互作用是在最近进化的,在叶绿体的祖先中,我的cs cs cs exestor higlophyceae的祖先,〜300。
David Nguyen、Phillipe-Henri Secretan、Sylvain Auvity、Fabrice Vidal、Martine Postaire 等人。儿科病房通过片剂粉碎悬浮口服药物的实践评估。《欧洲药剂学和生物药剂学杂志》,2020 年,157,第 175-182 页。�10.1016/j.ejpb.2020.10.013�。�hal- 03492602�
简介:确定44个马来西亚新生儿重症监护病房(NICUS)中血液培养阳性晚期败血症(LOS,> 72小时)的流行病学。材料和方法:研究设计:使用马来西亚国家新生儿注册中心的数据多中心回顾性观察性研究。参与者:739486名新生儿(出生体重≥500G,妊娠≥22周)出生并于2015 - 2020年出生。结果:LOS在2707(0.4%)新生儿中发展。Median annual incidence (per 100 admissions) was 12.0 (range: 8.1-13.8) in extremely preterm (EPT, gestation <28 weeks), 5.3 (range: 5.0-6.8) in very preterm (VPT, gestation 28-<32 weeks), 0.5 (range: 0.4-0.7) in moderate/late preterm (gestation 32-<37 weeks) and 0.1 in term (gestation ≥37周)新生儿。革兰氏阴性细菌占分离的病原体的54.7%,革兰氏阳性细菌39.3%,真菌和其他病原体6.0%。最常见的六种病原体是凝聚酶阴性葡萄球菌(18.3%),克雷伯氏菌属。(18.3%),金黄色葡萄球菌(9.9%),假单胞菌属。(8.9%),acinetobacter spp。(7.7%)和大肠杆菌(5.9%)。LOS-Attributable死亡率为EPT为14.3%,VPT为9.3%,LPT为8.3%,术语新生儿为6.2%。多重逻辑回归分析表明,EPT,小捕获(SGA),常规机械通气(CMV),高频通气(HFV),TPN和中央静脉线(CVL)的使用是与新生儿LOS相关的重要独立危险因素。结论:革兰氏阴性菌是最常见的病原体。与新生儿死亡率相关的重要独立危险因素是SGA,CMV,HFV,革兰氏阴性败血症,真菌败血症和肺炎。减少侵入性通气的使用情况,CVL和TPN可能会降低LOS的发病率和死亡率,特别是在妊娠<32周的新生儿中。
leber遗传性视神经神经病(Lhon,Omim#535000)是记录失明案例的重要贡献者。大多数LHON病例超过90%,是由线粒体脱氧核酸(MTDNA)中三个经典致病突变之一引起的:M.3460G> a,M.11778G> a,或M.144484T> c。这些突变发生在编码亚基ND1,ND4或ND6的基因中,氧化磷酸化(OXPHOS)呼吸复合物I(CI)[1]。但是,并非所有携带其中一个突变之一的本性人都会发展出这种疾病,这是一种被称为不完全渗透率的现象。这种高光是其他因素参与疾病表现[2]。对携带这些突变的患者的研究主要定义了与该疾病相关的简化元素,包括生理,环境,
BIO/301 12 解剖板,软木,凸起的边缘和排水槽,约 450 x 300 毫米。 BIO/302 2 软木,薄片,5 毫米厚,250 x 100 毫米,每包 10 个 BIO/303 1 解剖针,镀钢,长度 50 毫米,每包 100 个 第 4 部分:准备好的显微镜载玻片 生物学 BIO/400 1 动脉和静脉(组合),ts(染色) BIO/401 1 正常人体血液 BIO/402 1 葱属(洋葱)表皮 BIO/403 1 哺乳动物肺组织 BIO/404 1 肠(大),ts BIO/405 1 肾脏,ts BIO/406 1 肾脏,整个,ls BIO/407 1 肝脏,腺组织 BIO/408 1 哺乳动物柱状上皮细胞组织 BIO/409 1 神经,神经节,ts BIO/410 1神经、脊髓、ts、神经细胞、白质和灰质 BIO/411 1 食道、ts BIO/412 1 卵巢、ts、哺乳动物 BIO/413 1 胃壁、心脏末端、vs BIO/414 1 精子、人类精子涂片 BIO/415 1 睾丸、ts、大鼠 BIO/416 1 变形虫、整个、染色 BIO/417 1 哺乳动物纤毛上皮细胞组织 BIO/418 1 染色体、雄性、人类、正常 BIO/419 1 染色体、雌性、人类、正常 BIO/420 1 有丝分裂、洋葱根尖 BIO/421 1 双子叶植物茎、TS BIO/422 1 百合、花药、带有成熟花粉粒的 TS BIO/423 1 叶、双子叶植物被子植物,TS
原理抗菌敏感性测试(AST)是由实验室技术人员执行的实验室程序,以识别哪种抗菌方案对单个患者特别有效。引入各种用于治疗各种感染的抗菌素表明有必要在所有微生物实验室中进行抗菌敏感性测试作为常规程序。抗生素通常被定义为微生物产生的物质,例如青霉素,该物质具有杀死或抑制其他微生物(主要是细菌)的生长的能力。抗菌敏感性测试(ASTS)基本上测量了抗生素或其他抗菌剂抑制体外微生物生长的能力。抗生素易感性测试的基本原理已在80年以上的微生物实验室中使用。直到1950年代,实验室的方法和设备缺乏准确确定生物体对抗菌剂的体外反应的方法。Bauer等人开始使用圆盘扩散系统开发用于抗菌敏感性测试的标准化方法。抗菌易感性测试是定量的或定性的。临床实验室目前采用了几种方法,具体取决于他们提供的实验室测试菜单。这些方法包括磁盘扩散和最小抑制浓度(MIC)方法。光盘扩散测试是一种定性测试方法。琼脂盘扩散测试是常规抗菌易感性测试的最方便和广泛使用的方法。全国临床实验室标准委员会(NCCLS),现在称为临床实验室标准研究所(CLSI)已发布了有关光盘扩散系统的全面文件。在随后和当前的实践中,将抗菌浸渍纸盘应用于琼脂表面。各种监管机构和标准编写组织,根据Kirby-Bauer方法发布了标准化的参考程序。WHO和FDA发布了碟片系统的标准化参考程序,并由CLSI(以前为NCCL)定期更新任何抗菌测试,质量控制或临床测试。但是,在处理灵敏度光盘时,很少有预防措施,应咨询最新的CLSI文档以获取当前建议。
原理 抗菌药物敏感性测试 (AST) 是由实验室技术人员执行的一种实验室程序,用于确定哪种抗菌药物对个别患者特别有效。各种抗菌药物被用于治疗各种感染,这表明有必要在所有微生物实验室中将抗菌药物敏感性测试作为常规程序。抗生素通常被定义为微生物(如青霉菌)产生的物质,它能够杀死或抑制其他微生物(主要是细菌)的生长。抗菌药物敏感性测试 (AST) 主要测量抗生素或其他抗菌剂抑制体外微生物生长的能力。抗生素敏感性测试的基本原理已在微生物实验室中使用了 80 多年。直到 1950 年代,实验室还缺乏用于准确测定生物体对抗菌剂的体外反应的方法和设备。Bauer 等人开始使用纸片扩散系统开发抗菌药物敏感性测试的标准化方法。抗菌药敏试验有定量和定性两种。临床实验室目前根据其提供的实验室测试菜单采用几种方法。这些方法包括纸片扩散法和最低抑菌浓度 (MIC) 法。纸片扩散试验是一种定性测试方法。美国国家临床实验室标准委员会 (NCCLS)(现称为临床实验室标准研究所 (CLSI))已发布有关纸片扩散系统的综合文件。琼脂纸片扩散试验是常规抗菌药敏试验最方便和使用最广泛的方法。在后续和当前的实践中,将抗菌浸渍纸片应用于琼脂表面。各种监管机构和标准编写组织发布了基于 Kirby-Bauer 方法的标准化参考程序。WHO 和 FDA 发布了纸片系统的标准化参考程序,并由 CLSI(以前称为 NCCLS)定期更新,以用于任何抗菌测试、质量控制或临床测试。然而,在处理敏感度光盘时需要采取一些预防措施,应查阅最新的 CLSI 文档以了解当前的建议。
b'摘要\xe2\x80\x94准确估计充电状态 (SOC) 对于储能应用中电池管理系统 (BMS) 的有效和相对运行至关重要。本文提出了一种结合卷积神经网络 (CNN)、门控循环单元 (GRU) 和时间卷积网络 (TCN) 的新型混合深度学习模型,该模型结合了 RNN 模型特征和电压、电流和温度等非线性特征的时间依赖性,以与 SOC 建立关系。时间依赖性和监测信号之间的复杂关系源自磷酸铁锂 (LiFePO4) 电池的 DL 方法。所提出的模型利用 CNN 的特征提取能力、GRU 的时间动态建模和 TCN 序列预测强度的长期有效记忆能力来提高 SOC 估计的准确性和鲁棒性。我们使用来自 In\xef\xac\x82ux DB 的 LiFePO4 数据进行了实验,经过处理,并以 80:20 的比例用于模型的训练和验证。此外,我们将我们的模型的性能与 LSTM、CNN-LSTM、GRU、CNN-GRU 和 CNN-GRU-LSTM 的性能进行了比较。实验结果表明,我们提出的 CNN-GRU-TCN 混合模型在 LiFePO4 电池的 SOC 估计方面优于其他模型。'
目的:三磷酸腺苷敏感钾通道开放剂二氮氧化物可模拟缺血性预处理并具有心脏保护作用。明确二氮氧化物的作用位点和作用机制可为接受心脏手术的患者提供有针对性的药物治疗。几种线粒体候选蛋白已被研究作为潜在的三磷酸腺苷敏感钾通道成分。肾外髓质钾 (Kir1.1) 和磺酰脲类敏感调节亚基 1 被认为是线粒体三磷酸腺苷敏感钾通道的亚基。我们假设,在伴有心脏停搏液的全身缺血模型中,药物阻断或基因缺失 (敲除) 肾外髓质钾和敏感调节亚基 1 将导致二氮氧化物失去心脏保护作用。
摘要 —随着 CMOS 技术的不断扩展,微电子电路越来越容易受到微电子变化的影响,例如工作条件的变化。这种变化会导致微电子电路的延迟不确定性,从而导致时序误差。电路设计人员通常在电路和架构设计中使用保守的保护带来解决这些错误,但这可能会导致操作效率的显著损失。在本文中,我们提出了 TEVoT,这是一种监督学习模型,可以预测不同工作条件、时钟速度和输入工作负载下功能单元 (FU) 的时序误差。我们执行动态时序分析来表征不同条件下 FU 的延迟变化,并在此基础上收集训练数据。然后,我们从训练数据中提取有用的特征并应用监督学习方法建立 TEVoT。在 100 种不同的工作条件、4 种广泛使用的 FU、3 种时钟速度和 3 个数据集中,TEVoT 的平均预测准确率为 98.25%,比门级仿真快 100 倍。我们进一步使用 TEVoT 通过将电路级时序误差暴露到应用程序级来估计不同操作条件下的应用程序输出质量。在 100 种操作条件下,TEVoT 对两个图像处理应用程序的平均估计准确率达到 97%。