摘要 - 旨在估计鉴于源用途(SD)对的轨迹的异常风险(SD)对的轨迹异常检测已成为许多现实世界应用的关键问题。现有溶液直接训练一个生成模型,以进行观察到的轨迹,并将条件生成概率P(T | C)计算为异常风险,其中T和C分别代表轨迹和SD对。但是,我们认为观察到的轨迹被道路网络偏好混淆,这是SD分布和轨迹的常见原因。现有方法忽略了此问题,将其概括能力限制在分布轨迹上。在本文中,我们定义了轨迹轨迹异常检测问题,并提出了因果关系模型(即因果关系)来求解它。Causaltad采用do -calculus来消除道路网络偏好的混杂偏见,并估计p(t | do(c))作为异常标准。广泛的实验表明,Causaltad不仅可以在训练有素的轨迹上实现卓越的性能,而且通常可以提高分布数据外数据的性能,并改善2。1%〜5。7%和10。6%〜32。分别为7%。
因果推论提供了一组原则和工具,使人们可以将数据和知识结合起来,以与反事实性质的问题相结合,即如果现实是不同的,即使目前没有这种未实现现实的数据,也会发生的事情。强化学习提供了一系列方法,以学习一项优化特定措施(例如,奖励,遗憾)的政策,当代理人部署在环境中并采用探索性,反复试验的方法时。这两个学科已经独立发展,并且几乎没有相互作用。我们注意到,它们在同一构件的不同方面(即反事实关系)运作,这使它们毫无双重地连接。基于这些观察结果,我们进一步意识到,当这种联系被明确承认,理解和数学时,自然会出现各种新颖的学习机会。为了意识到这一潜力,我们进一步指出,部署RL药物的任何环境都可以分解为一种自主机制的集合,这些机制导致不同的因果不变,并且可以将其作为结构性因果模型而拼凑而成;今天的任何标准RL设置都暗示着这些模型之一。反过来,这种自然形式化将使我们能够将不同的学习方式(包括在线,非政策和因果关系学习)置于统一的处理方式下,这些学习似乎在文献中似乎无关。关键字:结构性因果模型,干预措施,反事实,增强学习,识别能力,鲁棒性,非政策评估,模仿学习。有人可能推测,这三种标准学习方式是详尽的,因为所有可能的反事实关系都是通过连续实施来学习的。我们表明,通过引入几种自然而普遍的学习环境类别,这些设置不符合这些方式,而是需要新颖的维度和类型的分析。特别是,我们将通过因果镜头介绍和讨论,在线学习的问题,在哪里进行干预,模仿学习和反事实学习。这组新的任务和理解会导致更广泛的相反学习的看法,并提出了研究因果推断和并排学习的巨大潜力,我们称之为因果关系加强学习(CRL)。
虽然人工智能广泛应用于生物医学研究和医学实践,但其使用仅限于少数特定的实际领域,例如放射组学。“生物学和医学中的人工智能”研讨会(耶路撒冷,2023 年 2 月 14 日至 15 日)的参与者,包括研究人员和从业者,旨在通过探索人工智能的进步、挑战和观点来构建整体图景,并为人工智能应用提出新的领域。演讲展示了大型语言模型 (LLM) 在生成分子结构、预测蛋白质-配体相互作用和促进人工智能开发民主化方面的潜力。还讨论了医疗决策中的伦理问题。在生物应用中,多组学和临床数据的人工智能整合阐明了低剂量电离辐射对健康的相关影响。贝叶斯潜在模型确定了未观察变量之间的统计关联。医疗应用强调了非侵入性诊断的液体活检方法、识别被忽视疾病的常规实验室检查以及人工智能在口腔颌面成像中的作用。可解释的人工智能和多样化的图像处理工具改进了诊断,而文本分类则检测到了博客文章中的厌食行为。研讨会促进了知识共享和讨论,并强调了在放射防护研究中进一步发展人工智能以支持新出现的公共卫生问题的必要性。组织者计划继续将该计划作为一项年度活动,促进合作并解决人工智能应用中的问题和观点,重点是低剂量放射防护研究。邀请参与放射防护研究的研究人员和相关公共政策领域的专家在下一次研讨会上探讨人工智能在低剂量辐射研究中的效用。
因果推断广泛应用于社会科学,以分析特定治疗的影响。因果推理工具依赖于事先发现基本因果图,这是一个称为因果发现的过程。传统上,构建因果图取决于专家领域知识。但是,嵌入大型语言模型(LLMS)中的丰富知识提供了一种有希望的选择。尽管如此,仅LLMS在推断完整的因果图方面的表现很差,这主要是因为它们无法说明因果图的定向无环性。为了解决这一限制,我们提出了一种新颖的方法,将LLM与统计因果发现算法相结合,以更好地利用LLM的专家样能力。实验结果表明,所提出的方法显着提高了因果序的准确性,并有效地减少了下游因果效应估计任务中的错误。
植物微生物群研究领域已迅速从旨在获得对微生物群组成的描述性理解的努力转变为重点是获取对微生物群功能和装配规则的机械见解。这一进化是由我们建立综合成本构成的植物相关的微生物和toreconstructMeaningfulmicrobial合成群落(Syncoms)的能力所驱动的。我们认为,这种强大的解构 - 重建策略可用于重建日益复杂的合成生态系统(Synecos),并机械地理解高级生物组织。从简单到更高级,完全易处理和可编程的gnotobiotic合成生物的过渡正在进行中,并旨在通过工程来合理地简化自然生态系统。这种重构生态方法代表了弥合生态生物学和功能生物学之间差距以及揭开植物的差距的尚未开发的策略 - 微生物群 - 调节生态系统健康,组装和功能的环境机制。
课程描述:本课程对定量方法和因果推断的基础提供了全面的介绍。通过将理论见解与现实世界的政策应用程序相结合,学生将通过使用统计软件Stata的动手实时编码会话获得实践技能(可通过King's Software Center免费下载)。该课程是为从事应用研究的学生而设计的,它鼓励参与者在“ BYO Recression Scars”课程中带来自己的工作进行讨论和协作改进。该课程的结尾是针对裁判裁判在定量分析中的批评的讲习班,为参与者做好了成功的学术出版物的准备。
CAIRS:用于数字心理健康的因果人工智能推荐系统 Mathew Varidel,博士 a;Victor An a,Ian B. Hickie a,医学博士,Sally Cripps b,c,博士,Roman Marchant b,c,博士,Jan Scott d,博士,Jacob J. Crouse a,博士,Adam Poulsen a,博士,Bridianne O'Dea e,博士,Frank Iorfino a,博士 a 悉尼大学大脑与思维中心,澳大利亚新南威尔士州。 b 悉尼科技大学人类技术研究所,澳大利亚新南威尔士州。 c 悉尼科技大学数学与物理科学学院,澳大利亚新南威尔士州悉尼。 d 纽卡斯尔大学神经科学研究所学术精神病学,英国纽卡斯尔。 e 弗林德斯大学心理健康与福祉研究所,弗林德斯大学,南澳大利亚阿德莱德,澳大利亚。 * 通讯作者:Mathew Varidel,5 楼,1 King Street,Newtown,新南威尔士州 2042,mathew.varidel@sydney.edu.au 摘要 数字心理健康工具有望增强和扩大有需要的人获得医疗服务的机会。一些工具向个人提供干预建议,通常使用简单的静态规则系统(例如,if-else 语句)或结合预测性人工智能。然而,干预建议需要基于对不同干预措施下未来结果的比较来做出决定,这需要考虑因果关系。在这里,我们开发了 CAIRS,这是一个因果人工智能推荐系统,它使用个人的当前表现和领域之间学习到的动态来提供个性化的干预建议,以识别和排名对未来结果影响最大的干预目标。我们的方法应用于从数字心理健康工具收集的两个时间点(从基线开始 1 周 - 6 个月)的多个心理健康和相关领域的纵向数据。在我们的例子中,心理困扰被发现是影响多个领域(例如个人功能、社会联系)的关键影响领域,因此在多个领域不健康的复杂情况下,心理困扰通常是首选目标。我们的方法广泛适用于因果关系很重要的推荐环境,并且该框架可以纳入实时应用程序中以增强数字心理健康工具。关键词:因果关系;人工智能;决策理论;幸福感;心理困扰;功能;睡眠;社会支持
导师 Dehan Kong 多伦多大学统计科学系副教授 dehan.kong@utoronto.ca 联合导师 Quan Long 卡尔加里大学生物化学与分子生物学系副教授 quan.long@ucalgary.ca 摘要 在这个项目中,候选人将参与一个关于大规模生物和医学数据中的因果推断的研究项目。关键创新在于进行表征学习以形成解开的潜变量(或分布),以减少噪音和非必要因素,从而为有效的因果推断铺平道路。将对脑部疾病的大规模组学数据进行分析,将统计方法转化为实际应用。这个跨学科项目将由 Dehan Kong 博士(多伦多大学)和 Quan Long 博士(卡尔加里大学)共同指导,Dehan Kong 博士是一位擅长因果推断、神经影像学和基因组学的统计学家,Quan Long 博士是一位医学院的计算机科学家,对脑部疾病感兴趣,可以接触到数据和领域专家。跨学科/应用经验 博士后研究员将在多伦多大学的 Kong 博士实验室和卡尔加里大学的 Long 博士团队之间分配时间。Kong 博士和 Long 博士在各种方法和应用统计研究领域拥有丰富的经验,涵盖因果推断、遗传和基因组学、神经成像和机器学习。他们的综合专业知识为研究员的培训和研究奠定了坚实的基础。 成功的候选人将沉浸在统计学和计算机科学的高度跨学科环境中。此外,候选人将与领域专家合作,他们可以从生物学和医学的角度提供解释。导师在相关领域有着长期的努力,并可以访问脑部疾病的大规模组学数据,包括阿尔茨海默氏症、帕金森氏症、自闭症、精神分裂症、双相情感障碍和抑郁症。研究小组可以使用最先进的计算设施,包括一台包含 800 个 CPU 的 CFI 支持的 HPC 服务器
卫生公平被定义为每个人都有公平而公正地实现最高健康水平的国家。实现健康平等被认为可以改善社区的福祉,降低医疗保健成本,并提高生产力和寿命。但是,健康差异仍然很大。在这种情况下,大规模数据收集和分析的新时代为诊断和了解健康不平等的原因提供了机会。在这项研究中,我们描述了使用因果推断工具系统地分析健康差异的框架。我们通过调查澳大利亚多数族裔与少数群体之间的种族和种族差异(ICU)(ICU)(ICU)(土著与非土著)和美国(非裔美国人与白人)之间的种族和种族差异来说明框架。我们证明,量化不平等的常用统计措施不足,并专注于将观察到的差异归因于产生它的因果机制。我们发现,少数族裔患者在入院时年龄较小,患有慢性健康,更有可能出于紧急和非安全原因而被录取,并且患病严重程度更高。同时,我们还发现属于少数群体的保护性直接效应,与大多数人相比,少数族裔患者的生存率提高,所有其他变量都相等。然后,我们证明这种保护效应与ICU接纳的可能性增加有关,而少数族裔患者患ICU的风险增加。此外,我们还发现,少数族裔患者在提高生存率的同时,实际上更有可能被重新入学到ICU。这些发现支持以下假设:由于获得初级卫生保健的机会较差,少数族裔患者更有可能在ICU中出现可预防的条件,从而导致死亡率降低并产生似乎具有保护性的作用。由于ICU入院的基线风险可能会因为缺乏获得初级保健服务而成为代理人,因此我们开发了本地重症监护股(IICE)雷达,这是一种监测系统,该监测系统可通过澳大利亚本地人口在跨地理区域中追踪ICU资源过度利用ICU资源。