该研究探讨了马哈拉施特拉邦 Hiware Bazaar 村农户采用数字技术的情况。Hiware Bazaar 村以集体努力和创新农业实践成功从干旱社区转变为繁荣社区而闻名。该研究采用了全面的案例研究方法,包括采访、调查和与当地农民的焦点小组讨论,以收集详细见解。结果表明,人们对数字工具的认识和使用程度很高,例如用于市场价格、天气预报和作物管理的移动应用程序,这些工具已显著提高作物产量和资源管理。尽管有这些好处,但该研究也发现了一些挑战,例如培训有限、基础设施不足以及社会文化对技术采用的抵制。结论强调了数字技术在印度农村地区彻底改变农业实践的潜力,倡导加强教育计划、基础设施建设、有针对性的激励措施和社区参与,以克服这些障碍。此外,它建议将传统农业知识与现代数字工具相结合,以最大限度地发挥效益并确保可持续发展。
骨质骨术是一种罕见的代谢骨疾病,其特征是骨矿物质密度异常增加,导致骨髓衰竭,压缩神经病和骨骼畸形(1)。根据遗传模式,可以将其分为常染色体显性骨质术(ADO),常染色体隐性骨质骨术(ARO)和X连接的骨质疏松症(XLO)(1-3)。ADO是骨质骨术的最常见形式,估计发病率为1:20,000(4)。早期,ADO被认为包括两种表型,ADO I(OMIM 607634)和ADO II(OMIM 166600)(2)。ADO I的特征是LDL受体相关蛋白5(LRP5)基因的突变,该基因导致高骨量,但不会导致骨折(5)。ADO II是由整骨骨吸收受损引起的,这些骨吸收通常是由于氯化物通道7(CLCN7)基因(6,7)中杂合的错义突变引起的。clcn7是一种基因,不仅可以引起严重的隐性骨质肌膜病形式,即ARO,而且还可以根据Clcn7突变的类型(8)。此外,由CLCN7突变引起的ADO II占ADO的70%,这是最常见的骨质疏松症类型(9)。因此,这项研究的重点是由CLCN7突变引起的骨质疏松症。CLCN7编码Cl- /H +交换转运蛋白7,也称为CLC-7,通常将其定位于溶酶体区室和骨 - 分解骨细胞的Ruf膜膜(10)。CLCN7突变导致骨质细胞异常无法分泌酸,因此无法溶解骨骼,从而导致骨质疏松症。这种疾病表现出异质性,表型表现出各种程度的严重程度,从无症状到威胁生命(11-13)。在没有基因检测或典型的放射线摄影发现的情况下,乳酸脱氢酶(LDH),天冬氨酸氨基转移酶(AST)和肌酸激酶BB同酶(CK-BB)的水平升高与Clcn7突变引起的骨化(14、15)有关。尽管如此,这些生物标志物的水平尚未证明与疾病的严重程度相关,而正常值不排除CLCN7基因中突变的存在(4)。因此,迫切需要找到更多的特定和敏感的生物标志物。有许多关于骨质造成症的遗传研究,但目前尚未发现CLCN7突变引起的骨质疏松症的血清代谢研究。通过阐明区分健康和疾病表型的特定特征,代谢组已成为理解生理和病理过程之间差异的基石,可能使我们可以搜索
鞭子用于多种马运动。从马福利的角度来看,这是激烈的争论,并将马体育社会许可放在有风险中。小跑赛车是允许使用鞭子的运动之一。鞭子用于使马加速(鼓励)和更正。该研究的目的是调查前三匹马之间的固定位置是否受鞭子使用的影响,鞭打罢工对小跑比赛结束时速度变化的影响以及鞭打的罢工是否有可能符合负强化的训练原理。种族视频,对鞭打罢工进行了注册,并将其与速度变化进行了比较,速度的变化可以读取来自同一种族的位置数据。研究了16场比赛中前三匹马(n = 48)。每匹马的罢工数量为0到16,平均为5.6。在1-3位的马匹之间收到的罢工数量没有差异,鞭打罢工最常见于减速。鞭打罢工,随后减速可能是负强化的一个例子。鞭打罢工以鼓励马匹在比赛结束时更快地奔跑,应从马福利的角度避免。需要进一步研究小跑比赛中鞭子使用的安全方面。
•负责和安全的AI(政府):CSIRO与澳大利亚政府紧密合作,提供科学和技术建议,以介绍负责和安全的AI政策的制定。这包括通过国家AI中心和AI安全研究网络提供有关AI安全的技术建议,并为澳大利亚行业开发了负责任的AI最佳实践目录以及AI多样性和包容指南。后者为政府使用AI的AI保证的国家框架的发展做出了贡献。csiro还为澳大利亚AI安全标准的发展做出了贡献,支持政府参与国际AI安全峰会,并促进了国际研究联盟,将澳大利亚定位为负责人AI的领导者。
由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
结果:发现分别显示出140和40%的CO 2和N 2 O的大幅增加。甲烷排放量增加了3%,而CO 2排放的最大效应值为2.66,氮速率<150 kg/hm 2。CH 4排放的效应值随土壤有机含量的降低而增加,CH 4排放的效应值从浓度> 6 g/kg时变为正变为正。随着氮速率增加,在稻草回流下的n 2 O排放效应最初增加然后减少。n 2 o排放量显着增加。随机森林模型的结果表明,在稻草返回下影响CO 2和N 2 O排放的最重要因素是施用的氮量,并且影响稻草返回下玉米领域的CH 4排放的最重要因素是土壤有机碳含量。
结果:从2019年到2021年,检测到皮肤分枝杆菌感染的发病率增加。最常见的感染病原体是野马菌,然后是脓肿。皮肤组织培养方法的敏感性,特异性和准确性分别为70%,100%和76.62%,而DNA微阵列CHIP测定法分别为91.67%,100%和93.51%。DNA微阵列芯片测定的灵敏度和准确性显着高于皮肤组织培养方法的灵敏度和准确性。这两种方法的阳性可能性和诊断优势比分别> 10和> 1。与DNA微阵列CHIP分析相比,皮肤培养方法中的负类似然比显着高(30%比8.33%),而Youden的指数显着较低(70.00%vs 91.67%)。假阴性结果与皮肤组织培养方法中使用抗生素的史存在显着关联。
偏头痛是一种普遍的临床疾病,其特征是复发性单侧跳动头痛发作,并伴随着恶心,呕吐,恐惧症和恐惧症等症状。尽管发生了常见,但偏头痛的诊断,病理生理和治疗仍然存在争议。广泛的研究已将肠道微生物群涉及各种中枢神经系统疾病,包括焦虑症,抑郁症和帕金森氏病。一些研究还表明,偏头痛可能源于对神经激素和代谢的中断。这项研究旨在研究偏头痛小鼠模型和正常小鼠之间肠道微生物群和代谢产物的差异,以阐明潜在的机制和潜在的治疗方法。在偏头痛小鼠模型和正常小鼠之间观察到肠道微生物组成的明显差异,表明这些变化与偏头痛的发病机理之间存在潜在的相关性。这项研究提供了肠道菌群组成和偏头痛小鼠模型和正常小鼠之间代谢物差异的证据,这表明Akkermansiaceae构成了假注射小鼠组中最丰富的分类群,而Lachnospiraceae构成了迁移小鼠模型组中最普遍的组。Akkermansia Muciniphila和Lachnospileceae细菌与代谢产物的丰富性之间的关联表明它们在偏头痛发病机理中的潜在作用。在偏头痛的小鼠中观察到的lachnospileaceae的丰度及其与代谢物变化的相关性表明它可能会影响宿主的健康。因此,益生菌治疗是偏头痛的可能治疗方法。此外,在偏头痛小鼠和正常小鼠之间观察到肠道代谢产物的显着差异。这些变化涵盖了多种代谢途径,表明代谢障碍也可能有助于偏头痛的发展。