HAMON FZCO,研发摘要这项工作提出了一个广义梯度估计器,该梯度估计器优化了涉及已知或黑框函数的期望,用于离散和连续的随机变量。我们合成并扩展了用于构建梯度估计器的标准方法,提供了一个框架,该框架会产生最小的计算开销。我们提出的方法证明了各种自动编码器的有效性,并引入了对加强学习,适应离散和连续的动作设置的直接扩展。实验结果揭示了提高的训练性能和样本效率,突出了我们在各个领域中估计器的实用性。未来的应用程序包括具有复杂注意力机制的培训模型,具有非差异可能性的连续远值模型,以及将我们的方法与现有方差减少技术和优化方法相结合。关键字:梯度估计,变异自动编码器(VAE),增强学习,重新聚集技巧,控制变体,策略梯度方法1。简介基于坡度的增强支持AI中的推进和支持学习。反向传播[16,19,12]的数字确定了可区分目标的斜率,而重新聚集技巧[24,4,4,13]赋予了概率模型的实际改进。尽管如此,许多目标需要斜率进行反向传播,例如,支持学习的黑盒能力[18]或离散抽样的不连续性[7,2]。[22]通过持续的放松提出了一个有思想的,低裂开的评估者。2。正在进行的技术通过角度评估者(包括艺人专家方法[21]和持续放松[7,2]来解决这一问题。我们通过学习基于大脑网络的控制变量来扩大这一点,即使没有一致的放松,也可以产生较低的,公平的评估材料,例如在支持学习或黑盒改进中。背景2.1。倾斜度估计器简化边界θ扩大支持学习中显示的假设(预期奖励Eτ〜π [r])和休眠变量模型(增强p(x |θ)= e p(z |θ)[p(x | z)])。我们增强L(θ)= E P(B |θ)[F(B)]。(1)
词汇表生成人工智能(AI)是AI技术的亚型,致力于通过应用机器学习算法生成新内容。与传统AI不同,该AI主要分析和解释现有数据,生成的AI综合了原始数据输出,例如文本,图像,音频甚至合成数据。该技术通过模型(例如生成对抗网络(GAN)和变异自动编码器(VAE))运行,以学习数据中的基本模式,并生成与现实世界(即非明显生成的)示例非常相似的新实例。Deep Dream是Google开发的AI技术,它使用卷积神经网络(CNN)将现有图像转换为超现实的类似梦想的视觉效果。它通过迭代增强训练期间确定的特征实现了这一目标,从而产生了日益复杂的视觉模式。Echolalia是单词或声音的非自愿重复,而Echopraxia则是指模仿他人的行为或动作。MidJourney是一种GAN AI工具,用于从文本描述符中生成图像,通常基于扩散或变压器体系结构,类似于Openai的Dall-E过度构图,不仅是模仿相关行为,而且还模仿无关紧要或没有功能的行为。模仿和变色龙效应是指在社交互动过程中模仿他人的姿势,举止和面部表情的无意识倾向。排斥是在社会环境或互动中有意排除或拒绝个人或群体。摄像机Bungura是一种由凸透镜制成的设备,该设备将图像投影到屏幕上,使艺术家可以追踪对象或场景的轮廓,而不是从头开始绘制它。在制作绘画时使用摄像头掩体可以产生几乎摄影的图像,尽管最终结果将是画布上的绘画。摄影(从字面意义上讲,含义“用光写作”)是由艺术家和发明家Louis-Jacques-MandéDaguerre在巴黎发明的,作为通过使用光敏材料以二维形式捕获图像的一种手段。
高级副总裁,数字支付技术领导者,领先银行组织摘要:全球支付系统的不断发展的复杂性在结算效率,风险管理和安全方面提出了挑战。传统方法通常在手动干预,延迟处理和高运营成本方面遇到困难。本文致力于探索生成AI在优化付款结算过程中的变革性潜力。通过利用经过大量交易数据培训的AI模型,我们提出了增强的方法来检测定居风险,预测流动性要求并减少异常。此外,将AI与区块链和智能合约集成在一起,有望更安全,透明和有效的结算机制。本研究为AI驱动的支付基础架构提供了一个框架,该基础架构遵守监管合规性,同时提高速度,准确性和安全性。我们的发现表明,在支付系统中采用生成AI可以大大降低运营成本,提供大量的财务收益并减轻风险,为更多无缝的无缝跨境交易铺平了道路,并将其定位为金融技术未来的关键创新,从而带来了优势的经济影响。关键字:生成AI,付款结算,实时付款,跨境交易,AI治理1。简介付款结算过程是全球金融系统的关键组成部分,传统上是复杂且耗时的,需要多个中介机构来验证和解决交易。2。这些模型具有随着对更快,更有效的付款解决方案的需求增长,金融机构越来越多地转向高级技术,例如生成AI。具有分析大量数据集,检测模式和预测结果的能力,该强大的工具正在彻底改变付款和解的方式。它减少了处理时间,增强了欺诈检测并自动化监管合规性,为金融技术提供了有希望的未来。本文探讨了生成AI在付款结算系统中的变革性和乐观的作用,其潜在应用以及相关的挑战,同时研究了AI驱动的财务流程中的安全性,监管考虑以及未来的方向。文献综述2.1生成AI:概念和进步生成AI是人工智能的一个子集,专注于生成新数据,这些数据模仿从输入数据中学到的模式和结构。早期模型等早期模型(VAES)和生成对抗网络(GAN)为现代技术的基础奠定了基础,这些技术的基础演变为更复杂的模型,例如基于变压器的建筑(例如GPT,BERT)。
Trupti Mohanty 1,Maitrey Mehta 2,Hasan M. Sayeed 1,Vivek Srikumar 2,Taylor D. Sparks 1 * 1材料科学与工程系,犹他大学,盐湖城,UT-84112,UT-84112。2 Kahlert计算学院,犹他大学,盐湖城,UT-84112,美国。 *通信:泰勒·D·斯帕克斯(Taylor D. Sparks),材料科学与工程系,犹他大学,盐湖城,UT-84112,美国,电子邮件:sparks@eng.utah.utah.utah.utah.utah.utah.utain摘要生成晶体结构,从文本描述中直接从文本描述中,标志着材料中的重要进步,可为您提供概念的流动路径。 将生成模型纳入晶体结构预测(CSP)为提高效率和创新提供了变革的机会。 虽然大型语言模型(LLM)在理解和生成文本方面表现出色,但它们在材料发现中的潜力仍然在很大程度上没有探索。 在这里,我们介绍了Crystext,这是一种从简单文本提示中生成晶体结构的高级方法,以材料组成和空间组编号为条件。 利用量化的低级别适应性(Qlora)进行微调,我们的方法可以直接从输入描述中直接从输入描述中产生有效且可扩展的CIF形成结构,从而消除了对后处理后的需求,从而确保了快速推理的有效微调。 对MP-20基准数据集的评估显示了高结构匹配速率和有效的RMSE指标,展示了该框架生成晶体结构的能力,这些晶体结构忠实地坚持指定的组成和晶体对称性。2 Kahlert计算学院,犹他大学,盐湖城,UT-84112,美国。*通信:泰勒·D·斯帕克斯(Taylor D. Sparks),材料科学与工程系,犹他大学,盐湖城,UT-84112,美国,电子邮件:sparks@eng.utah.utah.utah.utah.utah.utah.utain摘要生成晶体结构,从文本描述中直接从文本描述中,标志着材料中的重要进步,可为您提供概念的流动路径。将生成模型纳入晶体结构预测(CSP)为提高效率和创新提供了变革的机会。虽然大型语言模型(LLM)在理解和生成文本方面表现出色,但它们在材料发现中的潜力仍然在很大程度上没有探索。在这里,我们介绍了Crystext,这是一种从简单文本提示中生成晶体结构的高级方法,以材料组成和空间组编号为条件。利用量化的低级别适应性(Qlora)进行微调,我们的方法可以直接从输入描述中直接从输入描述中产生有效且可扩展的CIF形成结构,从而消除了对后处理后的需求,从而确保了快速推理的有效微调。对MP-20基准数据集的评估显示了高结构匹配速率和有效的RMSE指标,展示了该框架生成晶体结构的能力,这些晶体结构忠实地坚持指定的组成和晶体对称性。通过对船体上方的能量进行调节,我们进一步证明了水晶产生稳定的晶体结构的潜力。我们的工作强调了LLM在文本贡献的逆设计中的变革性作用,从而加速了新材料的发现。关键字:晶体结构预测(CSP),大语言模型(LLMS),量化低级适应性(Qlora)介绍传统方法,例如高通量筛选和第一原则计算在晶体结构预测(CSP)中一直是关键的[1-3] [1-3],但在计算上是昂贵的,并且是计算且具有时间量的范围,它们的化学范围跨越了范围,散布了范围的量表。利用变异自动编码器(VAE)[5-9]和生成对抗网络(GAN)[10-14]的生成方法加快了稳定的晶体结构的发现。然而,这些模型通常难以准确代表离散的原子类型及其连续的3D位置,同时结合了晶体对称性。基于扩散的模型[14-18]试图通过引入对称性的扩散过程[16]或整合诸如周期性,翻译和旋转诸如Equivariant denoising机制[17]之类的约束来解决这些局限性[17]。这些模型有效地生成具有对称约束的稳定结构,但它们在用户交互中的灵活性有限。他们对预定义的数值输入的依赖需要
扩散概率模型 扩散概率模型是一类潜在变量模型,常用于图像生成等各种任务(Ho 等人,2020 年)。正式而言,扩散概率模型通过对数据点在潜在空间中扩散的方式进行建模来捕获图像数据,这是受统计物理学启发的。具体来说,它们通常使用经过变分推理训练的马尔可夫链,然后逆转扩散过程以生成自然图像。一个值得注意的变体是稳定扩散(Rombach 等人,2022 年)。扩散概率模型也用于 DALL-E 和 Midjourney 等商业系统。生成对抗网络 GAN 是一类具有自定义对抗学习目标的神经网络架构(Goodfellow 等人,2014 年)。GAN 由两个以零和博弈形式相互竞争的神经网络组成,从而生成特定分布的样本。正式来说,第一个网络 G 称为生成器,用于生成候选样本。第二个网络 D 称为鉴别器,用于评估候选样本来自期望分布的可能性。得益于对抗性学习目标,生成器学习从潜在空间映射到感兴趣的数据分布,而鉴别器则将生成器生成的候选样本与真实数据分布区分开来(见图 2)。(大型) 语言模型 (大型) 语言模型 (LLM) 是指用于建模和生成文本数据的神经网络,通常结合了三个特征。首先,语言模型使用大规模、顺序神经网络(例如,具有注意力机制的 Transformer)。其次,神经网络通过自我监督进行预训练,其中辅助任务旨在学习自然语言的表示而不存在过度拟合的风险(例如,下一个单词预测)。第三,预训练利用大规模文本数据集(例如,维基百科,甚至多语言数据集)。最终,语言模型可以由从业者使用针对特定任务(例如,问答、自然语言生成)的自定义数据集进行微调。最近,语言模型已经发展成为所谓的 LLM,它结合了数十亿个参数。大规模 LLM 的突出例子是 BERT(Devlin 等人,2018 年)和 GPT-3(Brown 等人,2020 年),分别具有 ∼ 3.4 亿和 ∼ 1750 亿个参数。提示是语言模型的特定输入(例如,“这部电影很精彩。从人类反馈中进行强化学习 RLHF 从人类反馈中学习顺序任务(例如聊天对话)。与传统强化学习不同,RLHF 直接从人类反馈中训练所谓的奖励模型,然后将该模型用作奖励函数来优化策略,该策略通过数据高效且稳健的算法进行优化(Ziegler 等人,2019 年)。RLHF 用于 ChatGPT(OpenAI,2022 年)等对话系统,用于生成聊天消息,以便新答案适应之前的聊天对话并确保答案符合预定义的人类偏好(例如长度、风格、适当性)。提示学习 提示学习是一种 LLM 方法,它使用存储在语言模型中的知识来完成下游任务(Liu 等人,2023 年)。一般而言,提示学习不需要对语言模型进行任何微调,这使其高效且灵活。情绪:“),然后选择最可能的输出 s ∈{“positive”,“negative”} 而不是空间。最近的进展允许更复杂的数据驱动提示工程,例如通过强化学习调整提示(Liu et al.,2023)。seq2seq 术语序列到序列(seq2seq)是指将输入序列映射到输出序列的机器学习方法(Sutskever et al.,2014)。一个例子是基于机器学习的不同语言之间的翻译。此类 seq2seq 方法由两个主要组件组成:编码器将序列中的每个元素(例如,文本中的每个单词)转换为包含元素及其上下文的相应隐藏向量。解码器反转该过程,将向量转换为输出元素(例如,来自新语言的单词),同时考虑先前的输出以对语言中的模型依赖关系进行建模。seq2seq 模型的思想已得到扩展,以允许多模态映射,例如文本到图像或文本到语音的映射。Transformer Transformer 是一种深度学习架构(Vaswani 等,2017),它采用自注意力机制,对输入数据的每个部分的重要性进行不同的加权。与循环神经网络 (RNN) 一样,Transformer 旨在处理顺序输入数据(例如自然语言),可用于翻译和文本摘要等任务。但是,与 RNN 不同,Transformer 会一次性处理整个输入。注意力机制为输入序列中的任何位置提供上下文。最终,Transformer(或一般的 RNN)的输出是文档嵌入,它呈现文本(或其他输入)序列的低维表示,其中相似的文本位于更近的位置,这通常有利于下游任务,因为这允许捕获语义和含义 (Siebers et al., 2022)。变分自动编码器 变分自动编码器 (VAE) 是一种神经网络,它被训练来学习输入数据的低维表示,方法是将输入数据编码到压缩的潜在变量空间中,然后从该压缩表示中重建原始数据。VAE 与传统自动编码器的不同之处在于,它使用概率方法进行编码和解码过程,这使它们能够捕获数据中的底层结构和变化,并从学习到的潜在空间中生成新的数据样本 (Kingma and Welling, 2013)。这使得它们不仅可用于异常检测和数据压缩等任务,还可用于图像和文本生成。零样本学习/小样本学习 零样本学习和小样本学习是指机器学习处理数据稀缺问题的不同范例。零样本学习是指教会机器如何从数据中学习一项任务,而无需访问数据本身,而小样本学习是指只有少数特定示例的情况。零样本学习和小样本学习在实践中通常是可取的,因为它们降低了建立 AI 系统的成本。LLM 是小样本或零样本学习器(Brown 等人,2020 年),因为它们只需要一些样本即可学习一项任务(例如,预测评论的情绪),这使得 LLM 作为通用工具具有高度灵活性。
在当今快节奏的世界中,人工智能已成为一个广泛讨论的话题,它已从科幻小说中的概念转变为影响我们日常生活的现实。人们对人工智能及其将想象力融入日常生活的能力着迷。本文旨在探讨人工智能的概念、发展历程、各种类型的人工智能、训练模型、优势以及其多样化应用的案例。人工智能是指开发能够执行需要人类智能的任务的计算机系统。它通过机器学习、自然语言处理、计算机视觉和机器人技术等技术,帮助处理大量数据、识别模式并根据收集的信息做出决策。人工智能涵盖学习、推理、感知、解决问题、数据分析和语言理解等能力。人工智能的最终目标是创造出能够模拟人类能力并以更高的效率和精度执行各种任务的机器。人工智能领域有可能彻底改变我们日常生活的各个方面,例如虚拟个人助理、自动驾驶汽车、医疗诊断和治疗、推荐系统和欺诈检测。人工智能已融入众多行业和日常生活,展现出其多样化的应用。Siri、Google Assistant 和 Amazon Alexa 等虚拟个人助理利用人工智能进行自然语言处理和机器学习,从而提供更精准的响应。自动驾驶汽车使用人工智能算法分析传感数据,并进行实时驾驶决策。医疗保健专业人员利用 IBM Watson for Health 和 Google DeepMind 等平台,将人工智能算法应用于医疗诊断和治疗。Netflix、Amazon 和 Spotify 等在线平台利用人工智能根据用户行为和偏好提供个性化推荐。金融机构利用人工智能通过分析数据的算法实时检测欺诈活动。人工智能 (AI) 是一个复杂的决策过程,在某些领域超越了人类的能力。人工智能机器的一个关键特性是重复学习,这使它们能够从现实生活中的事件中学习并与人类互动。这种学习过程被称为机器学习,是人工智能的一个子领域。由于缺乏准确性和热情,人类难以完成重复性任务。相比之下,人工智能系统在其任务中表现出卓越的准确性。人工智能在医疗保健、零售、制造和银行等各个领域都有广泛的应用。人工智能主要分为两类:弱人工智能(Narrow AI)和强人工智能(General AI)。弱人工智能是指专为特定任务或特定范围的任务而设计的人工智能系统。这些系统在其指定领域表现出色,但缺乏广泛的认知能力。其特征包括专业化能力、应用范围有限以及缺乏意识。狭义人工智能的例子包括虚拟个人助理、推荐系统、图像识别软件、聊天机器人和自动驾驶汽车。而广义人工智能则旨在全面模拟人类智能,包括推理、解决问题、学习和适应新情况的能力。广义人工智能的特征包括类似人类的认知能力、适应性以及在各种任务和领域中概括知识的能力。目前,狭义人工智能是人工智能最常用的形式,广泛应用于各行各业。狭义人工智能的例子包括Siri和Alexa等虚拟个人助理、推荐系统、图像识别软件、聊天机器人和自动驾驶汽车。随着研究人员不断突破人工智能的界限,他们提出了不同级别的人工智能能力。广义人工智能就是这样一个概念,它被认为具有自我意识、意识和主观体验。然而,达到这一水平仍然是一个理论挑战。广义人工智能的发展仍是一个持续研究的领域。另一个极端是超级人工智能,也称为人工智能超级智能 (ASI)。这种类型的人工智能几乎在各个方面都超越了人类智能,并对社会和人类的未来产生重大影响。超级人工智能的特点包括认知优势、快速学习和适应能力,这些特点可以推动各个领域的快速发展。超级人工智能的发展也引发了人们对其潜在社会影响的担忧,包括与控制相关的风险、与人类价值观的契合度以及对人类生存的威胁。尽管目前还处于理论阶段,但研究人员正在积极探索其发展带来的影响和挑战。相比之下,反应式机器是最基本的人工智能类型,纯粹是反应式的。它们不会形成记忆,也不会利用过去的经验来做出决策。例如,IBM 的“深蓝”国际象棋超级计算机在 1997 年击败了国际象棋大师加里·卡斯帕罗夫。这些机器可以感知世界并采取行动,而无需存储任何记忆。而记忆有限的机器可以回顾过去,并根据观察结果做出决策。一个常见的例子是自动驾驶汽车,它会观察其他车辆的速度和方向,并相应地进行调整。这需要在特定时间内监控车辆的驾驶情况。这些信息不会存储在机器的经验库中。基于心智理论的机器可以理解人类的信念、情绪、期望等,并做出情绪化的反应。索菲亚就是这类人工智能的典型例子,尽管该领域的研究仍在进行中。换句话说,先进的机器正在被开发,它们对世界及其实体(包括人类和动物)有着更深入的理解。这些机器将能够回答简单的“假设”问题,并具备同理心,从而更好地理解他人的观点。更重要的飞跃是创造出具有自我意识的机器,它们能够意识到自身身份并预测他人的感受。这种智能水平将代表人工智能研究的重大突破。人工智能 (AI) 的工作原理是通过算法、计算能力和来自各种来源的数据来利用海量数据。该过程包括收集相关数据,对其进行预处理以确保其清洁度和结构化,根据任务需求选择合适的算法,使用标记或未标记数据训练模型,评估其性能,并将其部署到生产环境中执行实际任务。人工智能功能广泛而多样,涵盖各种随时间推移进行调整和改进的技术。这使得模型能够通过持续学习在动态环境中保持相关性和准确性。在线学习、迁移学习和强化学习等技术有助于从经验和反馈中获取新知识。在推理过程中,经过训练的人工智能模型会运用其学习到的模式和表征,对新数据进行预测或决策。此过程包括将输入数据输入模型,并根据模型的内部工作原理获得输出预测或分类。人工智能系统依靠数据、算法和计算能力从经验中学习、做出决策并自主执行任务。人工智能系统的具体功能取决于其架构、算法以及其设计目标任务的性质。人工智能的应用领域广泛,已被广泛应用于医疗保健、金融、零售、制造、交通运输、教育、市场营销、游戏、安全和自然语言处理等各个行业。这些应用包括诊断、患者预后预测、个性化治疗方案、信用评分、欺诈检测、客户服务、需求预测、供应链优化、智能游戏角色、面部识别、入侵检测、机器翻译、情绪分析等等。人工智能的未来很可能涉及机器学习、自然语言处理和计算机视觉的进一步发展,从而为各种应用和行业带来功能日益强大、集成度更高的系统。人工智能的潜在增长领域包括医疗保健、金融、交通、客户服务、刑事司法决策、招聘、教育以及其他涉及道德考虑的敏感领域。人工智能 (AI) 是一种使计算机和机器能够模拟人类学习、解决问题和决策等能力的技术。AI 应用程序和设备可以识别物体、理解人类语言、从新信息中学习,并向用户和专家提供建议。AI 研究的最新焦点是生成式 AI,它可以创建文本、图像和视频等原创内容。生成式 AI 依赖于机器学习 (ML) 和深度学习技术。深度学习彻底改变了机器学习领域,它使算法能够在无需人工干预的情况下从大量未标记数据集中进行预测。这项技术尤其适用于自然语言处理、计算机视觉以及其他需要在海量数据中识别复杂模式和关系的任务。因此,深度学习为我们日常生活中的大多数 AI 应用提供支持。深度学习还支持多种先进技术,包括半监督学习,它结合了监督学习和非监督学习,可以在标记数据和未标记数据上训练模型。此外,自监督学习从非结构化数据中生成隐式标签,而强化学习则通过反复试验和奖励函数进行学习。迁移学习允许将从一个任务或数据集获得的知识应用于另一个相关任务或不同的数据集。生成式人工智能是指能够根据用户的提示或请求创建复杂原始内容(例如文本、图像、视频或音频)的深度学习模型。这些模型对其训练数据的简化表示进行编码,然后从该表示中提取数据以生成与原始数据相似但不完全相同的新作品。生成式人工智能的最新进展促成了复杂的深度学习模型类型的发展,包括变分自编码器 (VAE)、扩散模型和变换器。变换器是许多备受瞩目的生成式人工智能工具的核心,例如 ChatGPT 和 GPT-4、Copilot、BERT、Bard 和 Midjourney。生成式人工智能的运作分为三个阶段:训练、调整和生成。该流程始于基础模型,这是一种深度学习模型,可作为多种不同类型生成式人工智能应用的基础。基础模型可以针对特定任务进行定制,例如文本或图像生成,并且通常基于海量数据进行训练。深度学习算法处理海量非结构化数据(TB级或PB级的文本、图像或视频),并使用基础模型根据提示自主生成内容。这一训练过程计算密集、耗时且成本高昂,需要数千个GPU和数周的处理时间,总计数百万美元。像Meta的Llama-2这样的开源基础模型项目使开发人员能够绕过这一步骤及其成本。为了针对特定的内容生成任务对模型进行微调,开发者可以使用诸如标记数据微调或人工反馈强化学习 (RLHF) 等技术。这需要向模型输入特定于应用的问题或提示以及正确答案。开发者定期评估其生成式 AI 应用的输出,进一步调整模型以提高准确性或相关性。另一种方法是检索增强生成 (RAG),它通过整合训练数据以外的相关来源来扩展基础模型,从而优化参数以提高准确性或相关性。生成式 AI 为各行各业和应用带来了诸多优势,包括重复性任务的自动化、更快地从数据中获取洞察、增强决策能力、减少人为错误、全天候可用以及降低物理风险。AI 可以自动化日常任务,使人类能够专注于创造性工作。它能够做出更快、更准确的预测和可靠的决策,使其成为决策支持或全自动决策的理想选择。AI 通过引导人们完成流程、标记潜在错误以及在无人干预的情况下自动执行任务来减少人为错误,尤其是在医疗保健等精准度至关重要的行业。随着机器学习算法接触更多数据并从经验中学习,其准确性不断提高,错误也随之减少。人工智能始终在线,全天候提供一致的结果。人工智能可以通过使用聊天机器人或虚拟助手来简化客户服务或支持的人员需求。它还可以简化生产流程,保持一致的产出水平,并自动执行那些可能危及人类工人的危险任务。例如,自动驾驶汽车可以降低乘客受伤风险。人工智能的实际应用包括通过聊天机器人改善客户服务、检测欺诈交易、个性化客户体验以及简化招聘流程。此外,人工智能代码生成工具可以加速应用程序开发,而预测性维护模型可以防止设备故障和停机。人工智能的快速应用带来了诸多好处,但也带来了挑战和风险。人工智能系统依赖的数据集可能容易受到篡改、偏见或网络攻击,从而损害其完整性和安全性。为了降低这些风险,组织必须在从开发到部署的整个人工智能生命周期中保护数据完整性。威胁行为者会针对人工智能模型进行盗窃、逆向工程或未经授权的操作,这可能会损害模型的架构、权重或参数。此外,还存在诸如模型漂移、偏差和治理结构崩溃等运营风险。如果不加以解决,这些风险可能会导致系统故障和网络安全漏洞,而威胁行为者可能会利用这些漏洞。为了优先考虑安全和道德,组织必须开发透明、可解释、公平的人工智能系统,包容、稳健、安全且可问责。人工智能伦理是一个多学科领域,旨在优化人工智能的有益影响,同时降低风险。人工智能伦理的原则包括可解释性、公平性和透明性。可解释的人工智能使人类用户能够解读算法产生的结果和输出。公平性和包容性要求在数据收集和模型设计过程中最大限度地减少算法偏差。建立多元化的团队对于创建包容性的人工智能系统至关重要。稳健的人工智能能够处理异常情况而不会造成损害,能够抵御有意和无意的干扰,并防止漏洞。问责制要求对人工智能的开发、部署和结果建立明确的责任和治理结构。与人工智能伦理相关的共同价值观包括可解释性、公平性、包容性、稳健性、安全性、问责制、透明性和责任感。用户必须了解人工智能的开发方式、功能、优势和劣势。提高透明度可以为人工智能模型和服务的创建提供宝贵的见解。确保隐私和合规性至关重要,因为像《通用数据保护条例》(GDPR)这样的监管框架要求组织保护个人信息。这包括保护可能包含敏感数据的人工智能模型,并开发能够适应不断变化的法规的适应性系统。研究人员根据人工智能的复杂程度对其进行了分类:弱人工智能(狭义人工智能)执行特定任务,而强人工智能(通用人工智能,AGI)则具有理解、学习和应用知识处理各种任务的能力,超越人类智能。具有自我意识的人工智能系统的概念仍是一个有争议的话题。人工智能发展的关键里程碑包括:- 1950 年:艾伦·图灵出版了《计算机器与智能》,提出了“机器能思考吗?”的问题,并提出了图灵测试。- 1956 年:约翰·麦卡锡在达特茅斯学院的第一次人工智能会议上提出了“人工智能”一词。- 1967 年:弗兰克·罗森布拉特制造了 Mark 1 感知器,这是一台基于通过反复试验进行学习的神经网络的计算机。- 1980 年:使用反向传播算法的神经网络在人工智能开发中得到广泛应用。 1995年,斯图尔特·罗素和彼得·诺维格出版了《人工智能:一种现代方法》,这是一本关于人工智能的权威教科书,探讨了人工智能的四个潜在目标或定义。大约在同一时期,IBM的“深蓝”国际象棋系统在一场对决中击败了世界冠军加里·卡斯帕罗夫。大数据和云计算时代到来,使企业能够管理用于训练人工智能模型的大型数据资产。21世纪初,人工智能取得了重大进展,包括约翰·麦卡锡在其2004年的论文《什么是人工智能?》中对人工智能的定义。数据科学开始成为一门热门学科,IBM Watson击败了《危险边缘!》冠军肯·詹宁斯和布拉德·鲁特。2015年,百度的 Minwa 超级计算机使用卷积神经网络识别图像的准确率高于人类。同年,在 DeepMind 的 AlphaGo 程序击败世界围棋冠军李索孛后,谷歌以 4 亿美元收购了 DeepMind。2020 年代,大型语言模型 (LLM) 兴起,例如 OpenAI 的 ChatGPT,它们显著提高了人工智能性能和推动企业价值的潜力。生成式人工智能实践使深度学习模型能够在大型数据集上进行预训练。截至 2024 年,人工智能趋势表明它将持续复兴,多模态模型通过结合计算机视觉和 NLP 功能提供更丰富的体验。IBM 强大的人工智能战略:推进值得信赖的人工智能以获得竞争优势一种利用人工智能力量的全面方法,包括创造竞争优势、在整个业务中扩展人工智能以及推进值得信赖的人工智能。
