在电子设备结构中引入层状二维 (2D) 材料是提升电子设备性能和提供附加功能的一种有趣策略。例如,石墨烯(导电性)已用作电容器 [ 1 ] 和电池 [ 2 ] 中的电极,而过渡金属二硫属化物 (TMD),例如 MoS 2 、 WS 2 和 WSe 2(半导体性),常用作场效应晶体管 (FET) 和光电探测器 [ 3 – 5 ] 中的沟道。六方氮化硼 (h-BN) 是由 B 和 N 原子排列成 sp 2 六方晶格的二维层状材料,其带隙为 5.9 eV [ 6 ]。因此,h-BN 是一种电绝缘体,并且在许多不同的应用中非常有用。到目前为止,h-BN 已被证明是一种非常可靠的 FET 栅极电介质,并且能够比高 k 电介质更好地抵抗电应力 [7,8],因为
已经进行了一项研究,以制造和化学修改Torlon®4000T和Torlon/p84共聚酰胺 - 酰亚胺混合的空心纤维作为异丙醇(IPA)脱水的新材料。已经发现,Torlon/p84混合物是可混杂的,正如通过单玻璃过渡温度(T G S)确认的,这些温度(T G S)通过差分扫描量热法(DSC)检测到。由干式湿旋转工艺制造的纯和混合空心纤维都不显示出对抑制水和IPA诱发的肿胀的能力,而交联的纯Torlon空心纤维仅显示边缘改善。然而,借助p- xylenadiamine,Torlon/P84混合纤维在化学交联修饰后表现出增强的分离性能。据信P- Xylenenediamine诱导的交联反应会导致更大的链条堆积和自由体积的减少。对于85/15 wt。%ipa/h 2 o进料溶液,获得的最高分离系数为185±8,所获得的总渗透量为1000±45 g/m 2 h。 ©2007 Elsevier B.V.保留所有权利。
关键字:通量角,蒸发,步骤覆盖,形成膜增长抽象典型蒸发过程始于10e-7 Torr范围。在这种高真空状态下,由于较长的平均自由路径,蒸发过程具有视线特征。设计用于升降机过程的蒸发器采用晶圆圆顶,其球形半径与源位置相匹配。与产生逆行角或底切轮廓的光刻过程相结合,该组合可以使清洁的金属升降机脱离。但是,相同的视线属性促进了金属提升的效果,从而导致了非保形步骤覆盖范围。使用常规的蒸发方法,共形步骤覆盖范围会导致升空难度。在这项工作中,我们将讨论雷神RFC最近开发的技术,该技术与标准升降机蒸发器相比提供了单向步骤覆盖优势。通过使用振荡晶圆运动,蒸发通量可以达到通常因膜增长而遮蔽的特征,从而改善台阶覆盖范围。此方法适用于希望在一个方向上的共形覆盖范围的应用。i ntrodruction金属化是通过大量蒸发的,然后是升降机以去除不需要的金属。电子束蒸发是一个简单有效的金属化过程。由于该过程通常在高真空下开始,因此涂层由于较长的平均自由路径而具有视线属性。不足的逆行角将在光震托上产生薄薄的金属层。产生逆行角度或产生垂直轮廓的双层过程的图像逆转照片过程将导致金属薄膜覆盖范围的不连续性,从而使清洁升降机可行。升空后,多余的金属将变成诸如纵梁,机翼或襟翼之类的缺陷。不幸的是,有益于提升过程的质量对于阶跃覆盖范围并不是最佳的。图1显示了一个金属层在另一个金属层上的阶梯覆盖的示例,该金属层由介电膜分开。
图 2. (a) 热丝 CVD 装置中的 CVD 工艺示意图。(b) 石墨烯生长后的铜箔光学显微照片,显示三个晶粒 G1、G2 和 G3。(c) 铜箔上 HF-CVD 石墨烯的典型拉曼光谱。(d) 2D 谱带强度的拉曼图和 (e) (b) 红色方块所包围区域的 2D 和 G 谱带强度比。[图片改编自 Ref. 27]
氧化锌薄膜在室温下通过电子束蒸发在玻璃基板上生长,然后在不同温度下在250至550 c的不同温度下退火压力600 mbar退火。薄膜的电气,光学和结构特性,例如电阻率,光透射率,带隙和晶粒尺寸,这是退火温度的函数。X射线衍射表明,最大强度峰对应于(002)在各种温度下退火的ZnoFILM的主要方向。最大宽度的全宽度,在退火处理后减少,这证明了晶体质量的改善。扫描电子显微镜图像表明,通过增加退火温度,晶粒尺寸变得更大,并且该结果与X射线衍射分析一致。由Elsevier Ltd.
摘要:我们对以色列埃拉特高盐度盐场池塘(盐度 280 至 290 g 1-0)底部石膏壳内发育的蓝藻和紫色细菌分层群落进行了描述。石膏壳厚 4 至 5 厘米,上部 1 至 2 厘米处栖息着富含类胡萝卜素的单细胞蓝藻(Aphanothece sp. 等),使石膏呈现橙棕色。在棕色层下面,发现了一个绿色层,主要由 Synechococcus 属的单细胞蓝藻组成,丝状 Phormidjum 型蓝藻是次要成分。在这些产氧光养生物层下面是一层红色的紫色细菌层。我们研究了石膏壳的光学特性,通过表征不同层中存在的色素并测量光谱标量使用光纤微探针测量地壳不同深度的辐射度。在地壳上部 2 毫米处,测量到的最大标量辐射度高达入射光的 200%。光谱蓝色范围(400 至 500 纳米)的光被上部棕色层中的保护性胡萝卜素(蓝黄素、海胆酮等)有效吸收。然而,光谱红色部分中大量的光穿透到绿色层,从而实现光合作用:620 和 675 纳米处约 1% 的入射辐射度到达深度为 15 毫米的绿色层,光谱红外部分中 >1% 的入射光到达深度为 20 至 23 毫米的紫色细菌。