在表3中,仅在Marília和Campos Novos Paulista(12地图)BRSOcauçu和BrsBoitatá的SC手段与检查IAC 14的平均值有很大差异,在Campos Novos Paulista和Empers(9.94和12.09%)中较低(-3.71和-2.37%)。关于RY和SY,在Campos Novos Paulista(8地图),BRSOcauçu和IAC 14没有显着差异,而BRSBoitatá则较差(RY的33.77%,SY为34.60%)。在Campos Novos Paulista(12地图)中,由于RY的优势,这两个品种的SY平均值比IAC 14的SY平均值高8.92和13.06%(12.27和15.20%)。在Marília中,尽管BRSOcauçu与RY中的IAC 14没有差异,但其SC的优势(9.94%)使其SY平均值比支票的SY平均值高30.55%,而BRSBoitatá在RY(40.74%)和SY(47.74%)方面都优越。在Ocauçu中,尽管Ry的平均值(52.67 T HA -1和59.10 T HA -1)和SY
抽象茶厂在生物活性化合物中丰富,包括类黄酮,氨基酸,生物碱,萜类化合物和脂质,这些主要影响茶质量和口味。尽管有许多关于不同茶品种的代谢产物的研究,但其生物合成和调节的组成差异仍然是未知的。在这项研究中,使用靶向的代谢组学广泛的代谢组学,包括192个黄酮和28 neminds和28 amino,从根尖的芽中检测到505种代谢产物('shuchazao':'scz':'scz':'scz':'huangkui':'hk'和'hk'和'zijuan':'zj':'zj'。代谢产物分析表明,黄酮醇和花色苷主要以三种品种的糖苷形式分布,其中花青素及其糖苷主要在“ ZJ”中积累,表明与颜色属性有相关性。EGCG成为三种品种中最丰富的Flavan-3-ols化合物。l-茶氨酸代表主要的游离氨基酸,与1叶相比,主要集中在顶端芽中,但同样,脂质与游离氨基酸相似,主要是在三个品种的顶端芽中积聚。这些发现为遗传和代谢物多样性提供了宝贵的见解,从而增强了我们对茶叶特定代谢物的生物合成的理解。
Micro-Tom 芽的突变率为 100%,而 AC 芽的突变率仅为 42.9%。与 Micro-Tom 不同,AC 编辑植物未报告产生单性结实果实(Tran 等人,2021 年;Ueta 等人,2017 年)。表 1 和表 2 表明,在测试的 ET 系群体中,转化和编辑效率都存在很大差异。虽然其中一些系具有相同的亲本来源,但它们的外来构建体采用潜力水平并不相同。值得注意的是,在 ET5 和 ET8 等优良系中,使用 pANT1ox 质粒和 pEG-IAA9 的转化效率密切相关(表 1 和补充表 1)。ET5 平均每个外植体呈现 16.88 个紫色斑点,21% 的 pEG-IAA9 转化植物具有 T-DNA 插入。ET8 中的这些数字分别为 14.32 和 33.33%。这两个品系对外来基因转化反应良好,是用作遗传改造技术材料的最佳 F8 ET 品系。在这两个品系中,ET5 表现出更高的编辑效率,表现为 G0 群体中单叶和无籽植物的数量(表 1)。然而,ET8 的高生产力和存活率有利于该品系保持和转移编辑的等位基因到下一代(表 3)。对于商业基因组编辑番茄的产生,ET8 是最佳推荐选择,它提供了高产量、高转化效率和低果实开裂率等有益特性(Nguyen 等人,2023 年)。
新方法:输入方法(建议 /方法通知 /作业)每个人都有机会为提出的国家方法评估的方法提供其他信息。希望在此过程中,最好是在订购论坛RHF中的治疗之前尽早提交意见。使用此表格为建议,方法警报和作业提供建议。在nyemetoder.no上,在订购论坛RHF中处理之前,新的建议/方法警报将具有状态“已接收/打开的输入建议”。已完成的表格将发送nyemetoder@helse-sorost.no。nb:第1-3和11点被所有人填写。第4-9点根据方法的作用和知识而填充。我知道该表格将在nyemetoder.no(检查)上完整发布:☒如果您认为无法发布信息,请在提交之前与秘书处联系。
摘要 仙人掌属植物(Opuntia ficus-indica (L.) Mill.)是能够耐受恶劣环境条件的最知名农作物之一。南非是少数拥有大量仙人掌种质资源的国家之一,这些种质资源代表了移地保护种群。然而,人们对该种群的遗传多样性知之甚少。此外,一些基因型在形态上不明显,因此,对于新手农民和研究人员来说,识别种质资源中的样本是一项挑战。本研究旨在使用八个简单序列重复 (SSR) 标记来区分和测量代表南非仙人掌种质资源的 44 个栽培品种的遗传多样性。显然,这些品种具有中等水平的多样性(平均多态性信息含量 PIC = 0.37,Nei 无偏基因多样性 = 0.42),可区分 90% 的品种。使用算术平均数 (UPGMA) 的非加权配对法对品种进行分析,发现主要分为三个聚类,而主坐标分析 (PCoA) 则显示,根据品种在农业中的用途,其聚类不明显。
图1的遗传转化效率(ET)线。10个选定的F8线被用作202材料,用于转化Pant1ox构建体。从幼苗中切出7天大的子叶,并通过pant1ox构建体转化203个子叶,然后在卡纳米霉素选择培养基上生长。在一个实验中使用了至少30个204个外植体。进行了三个生物学重复。pant1ox 205构造。kanr:kanamycin表达录音带(pnos-nptii-tocs),p35s:CAMV35S长启动器。b 206 slant1在番茄共叶中的表达(代表性图片)。上图:转换后21 207天的Slant1表达(DAT)。紫色箭头指示紫色斑点。下面板:紫色芽(左)208和水果(右)。c转换效率。y轴显示平均每209个外植体的紫色斑点。 X轴表示在本实验中测试的番茄F8线。数据表示平均值±SD。n = 3。210星号表示ET线与对照HK之间的显着差异(P <0.05),为211由t检验确定。212
Marigold(Tagetes Erecta L.)是该家族的一种流行的astreaceae植物,通常在包括印度在内的许多国家 /地区都因其装饰性而种植。植物在各种土壤和气候条件下很容易生长,并据报道会损害土壤的线虫种群并间接控制有害的微生物。高性能薄层色谱(HPTLC),以鉴定有两个万寿菊品种Pusa Narangi Gainda(PNG)和Pusa Basanti Gainda(PBG)的植物和叶子中一些重要的生物学活性化合物。使用硅胶薄层色谱法(TLC)板和甲苯和乙酸乙酯 - 甲酸 - 甲酸(T-E-F)(T-E-F)(13:11:2 v/v/v)进行定量分析。。结果表明,叶片中的化合物比流体更多,并且品种PNG比PBG积聚了更多的化合物。十五酸。但是,在品种PBG的流中发现了最大值。咖啡酸和槲皮素,而仅在叶片中仅检测到P-奶酪酸,仅在品种PNG的流中检测到Kaempferol。本报告中产生的信息可能有意义地用于促进对万寿菊作为抗氧化剂,杀虫剂,除草剂等自然来源的研究。
摘要:番茄晚疫病(LB)的病原菌是致病疫霉菌,是一种毁灭性的疾病,严重影响植物的生产力。植物中易感基因(S)的存在促进了病原菌的增殖;因此,抑制这些基因可能有助于提供广谱和持久的耐受性/抗性。先前对拟南芥和番茄的研究表明,PMR4 易感基因的敲除突变体对白粉病具有耐受性。此外,马铃薯中 PMR4 的敲低已被证明可以赋予对 LB 的耐受性。为了在本研究中验证番茄中的相同效果,将含有四个单向导 RNA(sgRNA:sgRNA1、sgRNA6、sgRNA7 和 sgRNA8)的 CRISPR-Cas9 载体(靶向尽可能多的 SlPMR4 区域)通过农杆菌介导的转化引入两种广泛种植的意大利番茄品种:“San Marzano”(SM)和“Oxheart”(OX)。选择了 35 株植物(26 株 SM 和 9 株 OX)并进行筛选,以确定 CRISPR/Cas9 诱导的突变。不同的 sgRNA 导致的突变频率范围从 22.1% 到 100%,或者精确插入(sgRNA6)或缺失(sgRNA7、sgRNA1 和 sgRNA8)。值得注意的是,sgRNA7 在七种 SM 基因型中诱导了纯合状态下的 − 7 bp 缺失,而 sgRNA8 导致产生十五种具有双等位基因突变( − 7 bp 和 − 2 bp)的 SM 基因型。选定的编辑品系接种了 P. infestans,其中四种在 PMR4 基因座完全敲除的品系与对照植物相比表现出减轻的病害症状(易感性从 55% 降低到 80%)。使用 Illumina 全基因组测序对四种 SM 品系进行测序以进行更深入的表征,而未显示出候选脱靶区域发生任何突变的证据。我们的结果首次表明,pmr4 番茄突变体对致病疫霉菌的易感性降低,证实了 KO PMR4 在提供针对病原体的广谱保护中的作用。
全球气候变化对现代农业和粮食安全构成挑战。作物育种中的密集选择大大缩小了适应气候的遗传多样性(Atherton and Rudich,1986;Lin 等人,2014)。例如,现代栽培品种仅占番茄资源总遗传变异的约 5%(Atherton and Rudich,1986)。这些挑战迫切需要开发新策略来利用野生物种,野生物种是尚未开发的理想抗逆性状的来源,以加速气候智能型作物的育种。基因组编辑已显示出其作为一种快速而精确的育种技术的威力,但创造由多个定量基因座支撑的复杂多基因性状(例如抗逆性状)仍然具有挑战性(Gao,2021)。特别是,由于基因编辑在植物中敲入和敲出效率低下,许多理想性状很难通过基因编辑创造。通过遗传杂交将野生亲属的抗逆性状引入优良品种可取得这样的成功。然而,由于遗传障碍、野生物种生长习性差异大以及优良品种人工去雄的劳动力成本等多重障碍,基因导入进程往往缓慢且耗费人力。例如,虽然目前番茄种子目录以 F 1 杂交种为主,但番茄种子生产成本高昂且费力,因为它需要对种子亲本逐一进行人工去雄,并进行授粉(Atherton 和 Rudich,1986 年)。
crispr驱动器是一种最新且可靠的工具,可允许对害虫种群(如疟疾媒介蚊子)等害虫种群进行持久的遗传操纵。近年来,有人提出CRISPR驱动器也可以用于控制植物疾病,害虫和杂草。然而,在2021年第一次在拟南芥中使用CRISPR驱动器已被证明在植物育种中使用该技术来获得纯合父母线条。这种观点提出了使用CRISPR驱动器来破坏易感基因的基因来发展耐原体品种的品种。在育种计划中,CRISPR用于在两个父母的杂种品种系列中创建S-基因突变。但是,必须重新涂抹CRISPR或长期折叠,以获得父母线以获取纯合S-突出品种。当父母线与不同的父母线交叉以开发新的杂种时,杂合的S-突变无法在杂种中抵抗病原体。CRISPR驱动器在理论上是有效的,可以通过CRISPR驱动器转换为只有一条父母的线条后,仅通过常规授粉来开发纯合的S-突变植物。以这种方式,育种者可以在不同的交叉组合中使用这条父母线,而无需重新填充基因组编辑技术或反向交叉。此外,CRISPR驱动器还可以允许开发无标记的耐药品种,并在驱动盒上进行修改。