在药物干预出现之前,抑制视网膜血管生成的主要方式是使用热激光。增生性糖尿病视网膜病变的眼睛可以用全视网膜光凝术治疗,而 nAMD 中的脉络膜新生血管 (CNV) 可以用激光消融治疗(如果保留了中央凹),然后如果中央凹受累,则使用基于卟啉的光敏剂(维替泊芬)进行光动力疗法 (PDT)。这些破坏性的激光治疗旨在阻止病情进展,但可能会导致目标视网膜永久性损伤并随后导致视力丧失。在 21 世纪初,玻璃体内注射针对 VEGF(以前称为“X 因子”)的药物,导致新生血管性视网膜疾病管理发生根本性范式转变,使异常新生血管能够消退。以上,我们总结了当前一代抗 VEGF 药物疗法(表 1)。
过量的胆固醇蓄积会诱导泡沫细胞的积聚,最终加速动脉粥样硬化的进展。历史上,巨噬细胞衍生的泡沫细胞因其在斑块形成中的核心作用而受到关注,这一机制受到了谱系追踪和单细胞测序 (sc-seq) 的联合研究的挑战。越来越多的研究揭示了血管平滑肌细胞 (VSMC) 如何增殖并迁移至血管内膜并聚集,然后在过剩脂质的诱导下转化为泡沫细胞,最终占小鼠和人类斑块中总泡沫细胞的 30% 至 70%。因此,VSMC 衍生的泡沫细胞的机制受到越来越多的关注。本综述旨在总结动脉粥样硬化中氧化低密度脂蛋白 (ox-LDL) 诱导 VSMC 转化为泡沫细胞的机制。
癌症免疫受到白细胞与肿瘤和基质细胞的相互作用进行时空调节,导致免疫逃避和免疫疗法耐药性。在这里,我们确定了内皮细胞(EC)的独特的间充质类群体,该群体在胶质母细胞瘤(GBM)中形成了免疫抑制性血管生态位。我们揭示了一种在空间限制的,Twist1/Satb1介导的顺序转录激活机制,通过该机制,肿瘤ECS产生骨桥蛋白以促进免疫抑制巨噬细胞(Mφ)表型。Twist1的遗传学或药理消融逆转Mφ介导的免疫抑制并增强T细胞浸润和激活,从而导致GBM生长降低和扩展小鼠的存活,并使肿瘤对嵌合抗原受体TRAMEROR疗法敏感。因此,这些发现发现了控制tu-Mor免疫力的空间限制机制,并建议靶向内皮扭曲1可能为优化癌症免疫疗法提供了有吸引力的机会。
日期操作10/2023已更新以将Eylea®移至步骤2,并添加EyleaHd®和Syfovre™和Bevacizumab™到该政策。9/2023重新格式化政策,并更新了IC,以与118EMGL§51A8/2023更新,以将Eylea®和Beovu®移至步骤3。7/2023重新格式化政策5/2023在政策999宣布的8月份变更之前,已更新为两步政策。4/2023已更新以将Vegzelma®添加到策略11/2022的步骤1中,以将Alymsys添加到步骤1和Cimerli到第2步。8/2022更新以添加Byooviz并将Lucentis®添加到步骤3 3/2022更新了新药物Vabysmo™和SUSVIMO™11/2020 VEGF抑制剂抑制剂步骤治疗。有效11/2020。政策#343脉络膜血管条件和策略#401视网膜血管发生抑制剂的玻璃体内血管生成抑制剂对视网膜血管条件的疗效已退休11/2020。有关覆盖信息,请参见策略#092 VEGF抑制剂步骤治疗。
图2 VAD GWAS的曼哈顿图。除了APOE区域的变体外,我们还确定了与VAD相关的五个新的遗传基因座。蓝色和红线分别对应于5e-7和5e-8的P值,分别针对全基因组暗示性和显着SNP。曼哈顿杂交荟萃分析的地块。每个点代表一个SNP,x轴显示每个SNP所在的染色体,Y轴显示了每个SNP与VAD的关联与VAD的cossestry荟萃分析中的 - log10 p值。红色水平线显示了全基因组的显着阈值(p值= 5E-8; - log10 p值= 7.30)。在每个基因座中最接近最重要的SNP的基因已被标记。
针对突变型 BRAF 的靶向疗法与 MEK 抑制剂 (MEKi) 联合使用可有效治疗晚期黑色素瘤。然而,治疗成功率会受到耐药性和不良事件 (AE) 的影响。已获批准的 BRAF 抑制剂 (BRAFi) 表现出高水平的靶标混杂性,这可能会导致这些影响。血管内壁与高血浆浓度的 BRAFi 直接接触,但抑制剂对这种细胞类型的影响尚不清楚。因此,我们旨在描述血管内皮对已获批准的黑色素瘤 BRAFi 的反应。我们发现临床批准的 BRAFi 诱导了内皮 MAPK 信号的矛盾激活。此外,磷酸化蛋白质组学显示每种抑制剂都有不同的脱靶组。使用维莫非尼和下一代二聚化抑制剂 PLX8394 治疗后,内皮屏障功能和连接完整性受损,但使用达拉非尼或恩科拉非尼则没有。总之,这些发现有助于深入了解 BRAFi 对内皮信号和功能产生的惊人不同副作用。更好地了解脱靶效应有助于确定不良反应背后的分子机制,并指导 BRAF 突变型黑色素瘤疗法的持续发展。
关键信息 • 鉴于血管伤口的复杂性和动态性,其评估仍然具有挑战性;人工智能和机器学习方法可以帮助进行伤口分析。• 利用 2957 张亚洲血管伤口图像,开发了机器学习模型来分析伤口图像。使用可解释性方法来解释人工智能决策推理。• 伤口图像分析模型对伤口图像的分类准确率为 95.9%(AUC 0.99),自动估计深度分类和伤口测量准确率为 85.0%(AUC 0.97)和 87.1%(AUC 0.92),伤口分割准确率为 87.8%(AUC 0.95)。• 随着进一步发展,它可以用作临床决策支持系统并集成到现有的医疗保健电子系统中。
临床上可用的小直径合成血管移植物(SDVG)由于移植物治疗受损而具有不令人满意的通畅率。因此,自体植入物仍然是小容器更换的金标准。可生物可吸收的SDVG可能是另一种选择,但是许多聚合物的生物力学特性不足,导致移植物衰竭。为了克服这些局限性,开发了一种新的可生物降解的SDVG,以确保安全使用,直到形成足够的新组织。SDVG是使用由热塑性聚氨酯(TPU)和新的自我增强TP(U-eREA)(TPUU)组成的聚合物混合物的电纺。通过细胞播种和血流相容性测试在体外测试生物相容性。在长达六个月的一段时间内,在大鼠中评估体内性能。 自体大鼠主动脉植入物充当对照组。 扫描电子显微镜,微型计算层析成像(μCT),组织学和基因表达分析被应用。 tpu/tpuu移植物显示出水孵育后生物力学特性的显着改善,并表现出极好的细胞和血流相容性。 所有移植物均保留专利,尽管壁稀疏,但生物力学特性还是足够的。 没有观察到炎症,动脉瘤,内膜增生或血栓形成。 对移植物愈合的评估显示了TPU/TPUU和自体导管的相似基因表达纤维。 这些新的可生物降解,自我强化的SDVG可能是未来临床使用的有前途的候选者。在长达六个月的一段时间内,在大鼠中评估体内性能。自体大鼠主动脉植入物充当对照组。扫描电子显微镜,微型计算层析成像(μCT),组织学和基因表达分析被应用。tpu/tpuu移植物显示出水孵育后生物力学特性的显着改善,并表现出极好的细胞和血流相容性。所有移植物均保留专利,尽管壁稀疏,但生物力学特性还是足够的。没有观察到炎症,动脉瘤,内膜增生或血栓形成。对移植物愈合的评估显示了TPU/TPUU和自体导管的相似基因表达纤维。这些新的可生物降解,自我强化的SDVG可能是未来临床使用的有前途的候选者。
图2 VAD GWAS的曼哈顿图。除了APOE区域的变体外,我们还确定了与VAD相关的五个新的遗传基因座。蓝色和红线分别对应于5e-7和5e-8的P值,分别针对全基因组暗示性和显着SNP。曼哈顿杂交荟萃分析的地块。每个点代表一个SNP,x轴显示每个SNP所在的染色体,Y轴显示了每个SNP与VAD的关联与VAD的cossestry荟萃分析中的 - log10 p值。红色水平线显示了全基因组的显着阈值(p值= 5E-8; - log10 p值= 7.30)。在每个基因座中最接近最重要的SNP的基因已被标记。
酒精是一种众所周知的致畸剂,产前酒精暴露 (PAE) 会导致许多心血管相关疾病的发病率增加。酒精会对发育中的胎儿大脑的血管生成和血管生成产生负面影响,导致胎儿酒精谱系障碍 (FASD)。大量的临床前证据表明,PAE 会损害大脑阻力小动脉的正常反应性,这些小动脉会根据代谢需求 (神经血管耦合) 调节血流分布。这种脑动脉扩张受损可能会对大脑在成年后易受脑缺血损伤产生影响。本综述的重点是巩固研究 PAE 对血管发育影响的发现,深入了解血管水平的相关病理机制,评估乙醇驱动的脑血管反应性改变的风险,并重新审视可能有希望逆转临床前 FASD 模型中的血管变化的不同预防干预措施。