背景:美国食品药品监督管理局 (FDA) 已批准三种 HPV(人乳头瘤病毒)疫苗。疾病控制和预防中心 (CDC) 和免疫实践咨询委员会 (ACIP) 建议在 11 岁或 12 岁时常规接种 HPV 疫苗。本研究旨在总结和描述 2006 年 7 月至 2017 年 5 月期间报告给 VAERS 数据库的 HPV 疫苗接种后不良事件。方法:在 VAERS 数据库中对与 HPV 疫苗相关的报告进行系统数据挖掘。在 HPV 疫苗接种后,在 VAERS 数据库中确定了临床相关的疫苗事件组合 (VEC)。仅当数据库中针对给定的不良事件 (AE) 存在至少 100 份报告时,才会考虑对 VEC 进行分析。本研究中使用的数据挖掘算法是报告比值比。ROR-1.96SE >1 的值被视为阳性信号。结果:在研究期间,VAERS 在接种 HPV 疫苗后收到了 49444 份报告。在 49444 份报告中,发现了 2307 份独特反应。共有 177 份死亡报告和 3526 份非死亡严重反应报告给 VAERS。ROR 显示腹痛、晕厥、头晕、抽搐、自然流产、脱发、闭经、肛门生殖器疣、宫颈发育不良、贫血、运动障碍、偏头痛、血压下降、跌倒、头部受伤、意识丧失、苍白、晕厥前兆、癫痫发作等症状呈阳性。结论:本分析未发现任何新的/意外的安全问题,与上市前试验的安全数据一致。需要进一步的流行病学研究来系统地验证 VAERS 提供的数据。
肠病毒(EVS)被分类为Picornaviridae家族中肠病毒属的成员。这些非发育的单链RNA病毒具有封装在病毒衣壳中的基因组,形成直径约为20-30 nm的对称二十面体颗粒(1,2)。肠内病毒属包括12种肠病毒物种(A-L)和3种鼻病毒物种(RV A-C)。属于肠病毒的肠病毒A71(EV-A71)通过粪便途径传输物种(2,3)。ev-A71于1969年在美国加利福尼亚州的无菌性脑膜炎的婴儿的粪便标本中首次分离出来(4)。从那时起,EV-A71的许多爆发和流行病已在全球范围内报道(5-8),自1990年代后期以来,亚太地区的出现了显着的事件(9)。EV-A71主要影响五年以下的儿童,是手,脚和口腔疾病(HFMD)的主要病因之一,通常在1 - 2周内作为一种自我限制疾病解决。但是,在严重的情况下,EV-A71会引起神经系统并发症,导致预后不良甚至死亡,对婴儿和幼儿构成重大健康威胁。因此,EV-A71被认为是脊髓灰质炎病毒后最显着的神经肠病毒(10-12)。EV-A71基因组长约为7,500个核苷酸,编码四种结构蛋白(VP1至VP4)和7种非结构性蛋白质(2A至2C至2C和3A至3D)。结构蛋白VP1至VP4首先结合形成杂种,六十个brotemer组装成一个封装病毒基因组的病毒式衣壳中(13)。暴露在衣壳的表面上,而VP4则位于内部(13,14)。VP1是由297个氨基酸组成的最免疫主导结构蛋白,并包含主要中和表位。它在EV-A71生命周期期间的病毒吸附,渗透和脱落中起着至关重要的作用,使其成为分子研究和疫苗发育的主要目标(15-17)。目前,尚无针对EV-A71的特定药物,因此支持治疗是与EV-A71相关疾病的主要治疗方法。疫苗接种是预防EV-A71的最有效,最有效的策略。最近对EV-A71疫苗的研究主要集中在灭活的疫苗(18、19),病毒样颗粒(VLP)(20-22),活疫苗(23、24)和亚基疫苗(25、26)。其中,只有灭活的EV-A71疫苗已经完成了人类的临床试验,而其他候选者仍在临床前动物评估中(27)。在2015年至2017年之间,中国食品药品监督管理局(CFDA)批准了针对EV-A71 C4子基因型的三种灭活疫苗的商业化(28-30)。III期临床试验表明,所有三种疫苗都有效地降低了与EV-A71相关的HFMD(27)。然而,灭活的疫苗面临挑战,包括高生产成本,长期发育时间表以及潜在的免疫原性,这可能导致细胞免疫反应的刺激不足(22)。作为一种有希望的多功能疫苗平台,基于mRNA的疫苗适用于传染病和癌症。此外,越来越多的证据表明,与共同循环的EV-A71菌株的突变以及造成了快速病毒进化的突变,对灭活疫苗构成了潜在的挑战(31,32)。他们提供了几个优势,包括较短的发育周期,强大的免疫原性,有利的安全性和对突变的适应性(33,34)。RNA分子修饰和
2024年5月,欧洲疾病预防与控制中心(ECDC)报告说,从2023年底开始,九个欧盟/参见国家/地区都记录了欧洲传染病监测门户(Epipulse),parvovovirus b19(B19V)的阳性率显着增加。增加的增加是在小儿年龄和孕妇1中检测到的。已于2024年4月,ECDC已向ECDCSOHO输血网络的国家焦点(NFP)提出了有关执行B19V对血液和血液 - 分量捐赠的筛查测试的执行以及捐助者人群B19V感染病例增加的可能观察的信息。<在提供回应的18个国家中,很多人宣布他没有定期进行捐赠的B19V筛查;除了很少有对Lavil形的血液组件进行测试的国家外,不可忽略的成员国数量,但宣布,通过对B19V进行积极测试的信息,通过在制药行业进行的测试对B19V进行了积极测试,这些测试是由制药行业执行的,这些测试是由在某些制造工具中收集的PLASMA收集的Plasma收集的Plasma,该测试是在某些制造公式中收集的。十个国家(芬兰,匈牙利,卢森堡,立陶宛,荷兰,捷克共和国,丹麦,法国,德国,德国和斯洛伐克)的记录,与2024年相比,与2024年初的工业剥离相比,对献血者或等离子体捐赠的B19V反应性提高了B19V。最近,意大利共享了初步数据,该数据表明该部门的血浆单位显着增加,该部门从2023年12月底到2024年的前六个月,在B19V处为正。。
IL-27 是 IL-6/IL-12 细胞因子超家族的成员,主要由抗原呈递细胞分泌,特别是树突状细胞、巨噬细胞和 B 细胞。IL-27 具有抗病毒活性,可调节针对病毒的先天和适应性免疫反应。IL-27 在病毒感染环境中的作用尚不明确,促炎和抗炎功能均有描述。在这里,我们讨论了 IL-27 在几种人类疾病病毒感染模型中的作用的最新进展。我们重点介绍了 IL-27 表达调控的重要方面、感染不同阶段的关键细胞来源及其对细胞介导免疫的影响。最后,我们讨论了在人类慢性病毒感染的背景下更好地定义 IL-27 的抗病毒和调节(促炎与抗炎)特性的必要性。
2019 年新出现的新型冠状病毒 (CoV),被称为严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2),与 SARS-CoV(现为 SARS-CoV-1)和中东呼吸综合征冠状病毒 (MERS-CoV) 一样,感染率很高,已导致超过 36,405 人死亡。在没有获批上市的抗冠状病毒药物的情况下,全球范围内治疗和管理这种新型冠状病毒疾病 (COVID-19) 是一项挑战。药物再利用是一种有效的药物发现方法,它源自早期获批的药物,与从头药物发现相比,可以减少时间和成本。直接针对病毒的抗病毒药物针对病毒的特定核酸或蛋白质,而基于宿主的抗病毒药物则针对宿主的先天免疫反应或对病毒感染至关重要的细胞机制。这两种方法都必然会干扰病毒的致病机制。在这里,我们总结了目前针对冠状病毒(尤其是 SARS-CoV-2)的基于病毒和基于宿主的药物再利用前景的现状。
猪繁殖与呼吸综合征 (PRRS) 是最重要的猪病之一,造成全球巨大的经济损失。病原体 PRRS 病毒 (PRRSV) 是一种有包膜的单链正义 RNA 病毒,与马动脉炎病毒 (EAV)、小鼠乳酸脱氢酶升高病毒 (LDV) 和猿猴出血热病毒 (SHFV) 一起被归类为动脉炎病毒科、动脉炎病毒属、Variarterivirinae 亚科。其基因组长度约为 15 kb,包含至少 11 个开放阅读框 (ORF),具有 5' 帽和 3' 多聚腺苷酸尾 (1-3)。约占基因组三分之二的ORF1a和ORF1b编码非结构蛋白(nsp1~12),具有蛋白酶、复制酶和调控宿主细胞基因表达等功能,负责病毒RNA的合成( 4 )。基因组3’末端的ORF2~7编码结构蛋白,包括糖蛋白2(GP2)、GP3、GP4、GP5、包膜蛋白(E)、基质蛋白(M)、核衣壳蛋白(N),由一系列亚基因组RNA表达( 5 )。由于PRRSV RNA依赖性RNA聚合酶(RdRp)缺乏校对能力,病毒基因组极易发生突变和重组,导致世界范围内出现新的PRRSV分离株( 6 )。目前,PRRSV 可分为两个种:PRRSV-1(欧洲基因型,Betaarterivirus suid 1)和 PRRSV-2(北美基因型,Betaarterivirus suid 2)。两个种均表现出很高的遗传多样性,核苷酸序列同一性约为 60%,每个种可进一步分为多个分支、亚株或谱系。在中国,优势毒株为 PRRSV-2,其高致病性变异株的爆发引起养猪业的担忧(7)。PRRSV 感染可导致母猪严重繁殖障碍,并使各年龄段的猪患上呼吸道疾病,并常导致继发性细菌感染(如副猪嗜血杆菌和猪链球菌),临床表现更严重,死亡率更高(8)。
在Chi等人发表的文章中,将MERS-COV S1亚基的序列注入了人CD4的跨膜结构域(TM)和RABV G蛋白的细胞质结构域(CD)。将单个转录单元插入RABV(SRV9菌株)cDNA克隆中,用于营救嵌合RABV,RSRV9-MERS S1,将融合片段S1 -TM-CD插入了RABV(SRV9菌株)cDNA克隆。透射电子显微镜表明,使用反向遗传学成功救出了活病毒。间接免疫荧光测定法证明了S1亚基被表达并转运到细胞表面。随后,收集了RSRV9 -MERS S1库存,被B-丙二醇酮灭活,然后在不连续的蔗糖梯度上通过超速离心纯化。进一步,Chi等。使用三种不同的动物进行体内测试:小鼠,骆驼和羊驼。小鼠的测试表明
摘要宫颈癌是一种恶性肿瘤,可以传播(转移)向其他可能导致死亡的器官传播(转移)。根据全球癌症研究负担(Globocan),宫颈癌的主要原因中有95%是人乳头瘤病毒(HPV)。到目前为止疫苗接种是防止HPV感染的一种方法。类型的病毒(例如颗粒(VLP)病毒疫苗)与弱化病毒疫苗的类型不同。没有遗传物质,因此不能具有传染性和复制性,这是与使用活病毒在疫苗生产开发中使用的疫苗类型相比,这是潜在的VLP安全。在这项研究中,它更加专注于评估4个VLP VLP VLP设计模型嵌合HPV 18/45/59,这些模型已修改了LOOP,DE,EF,EF,FG,HI,HI具有免疫信息方法。结果表明,模型3疫苗的设计具有最佳,最安全的评估,包括抗原性(0.5284),物理化学特性(分子量为51.16 kDa,等电(PI)5.71和Grvy 0.358),并且疫苗没有引起过敏的反应和毒性。In addition, Model 3 vaccine candidates show significant immunogenicity, namely an increase in antigens on the 5th day, and began to decline on the 20th day, meaning that the body responds to the vaccine as an antigen marked by an increase in immunoglobulin M (IGM) and immunoglobulin G (IgG) which is 1.4 x 10 6 Count/ml长期。该结果表明,模型3具有用作有效且安全的疫苗的最大潜力。关键字:宫颈癌,人乳头瘤病毒(HPV),诸如粒子>的病毒
摘要 丙型肝炎病毒 (HCV) 是非甲非乙型肝炎的最重要病原体,也是慢性肝病和肝细胞癌的主要原因。研制有效的疫苗是预防感染最实用的方法,但 HCV 感染是否会在宿主体内引发保护性免疫尚不清楚。尝试用慢性感染患者的血浆在体外中和 HCV,并通过接种八只血清阴性黑猩猩来评估残留传染性。HCV 的来源是从一名患者在移植后非甲非乙型肝炎急性期获得的血浆,该血浆之前已在黑猩猩中测定过传染性。在原发性感染开始 2 年后从同一患者获得的血浆中实现了中和,但在 11 年后获得的血浆中未能实现中和,尽管两种血浆都含有针对非结构和结构(包括包膜)HCV 蛋白的抗体。对同一患者连续病毒分离株的分析表明,早在感染 2 年后,遗传分化就已显著。然而,感染 2 年后从患者身上分离出的 HCV 与从接种了急性期病毒的黑猩猩身上分离出的 HCV 具有惊人的序列相似性,这表明新毒株的祖先在 2 年前就已经存在。这一证据,加上从接受相同接种物的黑猩猩身上分离出的 HCV 的不同序列,证实了 HCV 在体内以准种的形式存在。这些结果提供了体内实验证据,表明 HCV 感染会在人类中引发中和抗体反应,但表明这种抗体是分离株特异性的。这一结果引起了人们对开发广泛反应的 HCV 疫苗的担忧。
组织Cu,Fe和Zn作为实验四甲甲基脑病的主要决定因素。生命科学, /3:897(1973)。24。Packer,L。和Jacobs,E。E。:磷酸化与线粒体呼吸链的末端段的耦合。Biochim。Biphys。 Acta,57:37 I(1962)。 25。 Patel,A。J.,Michaelson,I。 A.,Cremer,J.E。和Balazs,r。:哺乳的大脑的代谢,sucking剂的大鼠被无机铅陶醉。 J. Neurochem。,22:581(1974)。 26。 Patel,A。J.,Michaelson,I。 A.,Cremer,J。E.和Balazs,r。:年轻大鼠摄入铅的大脑中的代谢室内的变化。 J. Neurochem。,22:591(1974)。 27。 Pentschew,A。和Garro,f。:哺乳老鼠的铅瘤性脑病及其对卟啉症神经疾病的影响。 Acta Neuropathol。,6:266(1966)。 28。 Potter,V。R.,Schneider,W。C.和Liebl,G。J。:新生大鼠组织生长和分化过程中的酶变化。 Cancer Res。,5:21(1945)。 29。 Rhyne,B。C.和Goyer,R。A。:实验性铅中毒中肾脏线粒体的细胞色素含量。 EXP。 mal。 Pathol。,14:386(1971)。 30。 Sanadi,D。R.和Jacobs,E。E。:细胞色素氧化酶区域(现场ILL)的氧化磷酸化测定。 JO:38(1967)。 31。 Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。Biphys。Acta,57:37 I(1962)。25。Patel,A。J.,Michaelson,I。A.,Cremer,J.E。和Balazs,r。:哺乳的大脑的代谢,sucking剂的大鼠被无机铅陶醉。 J. Neurochem。,22:581(1974)。 26。 Patel,A。J.,Michaelson,I。 A.,Cremer,J。E.和Balazs,r。:年轻大鼠摄入铅的大脑中的代谢室内的变化。 J. Neurochem。,22:591(1974)。 27。 Pentschew,A。和Garro,f。:哺乳老鼠的铅瘤性脑病及其对卟啉症神经疾病的影响。 Acta Neuropathol。,6:266(1966)。 28。 Potter,V。R.,Schneider,W。C.和Liebl,G。J。:新生大鼠组织生长和分化过程中的酶变化。 Cancer Res。,5:21(1945)。 29。 Rhyne,B。C.和Goyer,R。A。:实验性铅中毒中肾脏线粒体的细胞色素含量。 EXP。 mal。 Pathol。,14:386(1971)。 30。 Sanadi,D。R.和Jacobs,E。E。:细胞色素氧化酶区域(现场ILL)的氧化磷酸化测定。 JO:38(1967)。 31。 Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。A.,Cremer,J.E。和Balazs,r。:哺乳的大脑的代谢,sucking剂的大鼠被无机铅陶醉。J.Neurochem。,22:581(1974)。26。Patel,A。J.,Michaelson,I。A.,Cremer,J。E.和Balazs,r。:年轻大鼠摄入铅的大脑中的代谢室内的变化。J.Neurochem。,22:591(1974)。27。Pentschew,A。和Garro,f。:哺乳老鼠的铅瘤性脑病及其对卟啉症神经疾病的影响。Acta Neuropathol。,6:266(1966)。28。Potter,V。R.,Schneider,W。C.和Liebl,G。J。:新生大鼠组织生长和分化过程中的酶变化。Cancer Res。,5:21(1945)。 29。 Rhyne,B。C.和Goyer,R。A。:实验性铅中毒中肾脏线粒体的细胞色素含量。 EXP。 mal。 Pathol。,14:386(1971)。 30。 Sanadi,D。R.和Jacobs,E。E。:细胞色素氧化酶区域(现场ILL)的氧化磷酸化测定。 JO:38(1967)。 31。 Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。Cancer Res。,5:21(1945)。29。Rhyne,B。C.和Goyer,R。A。:实验性铅中毒中肾脏线粒体的细胞色素含量。EXP。mal。Pathol。,14:386(1971)。30。Sanadi,D。R.和Jacobs,E。E。:细胞色素氧化酶区域(现场ILL)的氧化磷酸化测定。JO:38(1967)。 31。 Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。JO:38(1967)。31。Scott,K。M.,Hwang,K。M.,Jurkowitz。 xxi!l。Scott,K。M.,Hwang,K。M.,Jurkowitz。xxi!l。M.和Brierly,G。P。:通过心脏线粒体运输离子。铅对线粒体反应的影响。
