在光学和微波域之间转换信号的新策略可能在推进古典和量子技术方面起关键作用。传统的光学到微波转导的方法通常会扰动或破坏针对光线强度编码的信息,从而消除了这些signals进一步处理或分布的可能性。在本文中,我们引入了一种光学到微波转换方法,该方法允许对微波光子信号进行检测和光谱分析,而不会降低其信息含量。使用与压电电换能器集成的光力学波导证明了此功能。该系统内有效的机电和光力耦合允许双向光学到微波转换,量子效率高达-54.16 dB。通过在通用布里渊散射中保存光场包膜时,我们通过通过一系列具有独特的共振频率的电动机电sepguments传输光学信号来证明多通道微波光谱过滤器。这种电力力学系统可以为微波光子学中的遥感,通道化和频谱分析提供灵活的策略。
集成量子光子学中的方向性已成为在单光子水平上实现具有非线性的可伸缩量子技术的有前途的途径。拓扑光子波导已被提出是一种在芯片上利用这种定向光 - 物质相互作用的新方法。然而,与常规线缺陷波导相比,嵌入式量子发射器与拓扑波导的定向耦合的强度仍然存在。在这项工作中,我们使用实验,理论和数值分析的组合对一系列波导中的方向耦合进行了研究。我们定量地表征了光照耦合在几个拓扑光子波导上的位置依赖性,并基准了其定向耦合性能与常规线缺陷波导。我们得出的结论是,与传统的线缺陷波导相比,拓扑波导的表现不佳,将其定向光学凭证构成疑问。证明这不是领域成熟的问题;我们表明,最新的逆设计方法,同时能够改善这些拓扑波导的定向发射,但仍将它们显着地落后于常规(滑动平面)光子晶体波导的操作。我们的结果和结论为改善定量预测的量子非线性效应的实施铺平了道路。
光学放大设备是光学通信系统中的关键组件。在1980年代,Erbium掺杂的纤维放大器(EDFAS)是一项开创性的成就,可以实现长途光学通信和革命性的信息传输[1,2],因为EDFA一直为全球基于纤维的通信网络提供了低噪声的高收益,数十年来。erbium离子在覆盖高输出功率的电信带中表现出稳定和低噪声增益,使Erbium掺杂介质非常适合光学放大器和激光器。但是,EDFA通常需要一米至数十米的光纤长度,这使它们容易体现环境波动,并为整合工作带来挑战。半导体光放大器(SOA)具有高增益和集成,但它们具有极化敏感[3],噪声图也相对较高。对比,与不同光子平台的稀土离子掺杂显示了可以有效解决问题的综合掺杂波导放大器(EDWAS)的巨大希望[4,5]。根据1990年代开始对EDWA进行的研究[6]。如今,Edwas引起了重大的兴趣,受益于不同集成光子平台的传播损失,包括氮化硅(SI 3 N 4)[1、7-9] [1、7-9],氧化泰当不是(TEO 2)[10]和Niobate(Niobate(ln)[4、11-18)[4、11-18] [4、11-18] [4、11-18]>尤其是,由于其透明度较大,非线性和出色的电极(EO)特性,LN长期以来一直是光子学的有希望的材料。绝缘子(LNOI)平台上的Niobate锂结合了LN的优势与增强的模式限制,使其成为下一代光子集成电路
我们研究了在两个和三个耦合的平行Schrieffer-Heeger(SSH)波导阵列的边缘的多极拓扑孤子的形成。我们表明,耦合波导阵列中的波导间距(二聚体)中波导间距的独立变化导致其在几个具有不同内部对称性的多个拓扑边缘状态的边缘出现。新兴边缘状态的数量取决于拓扑非平凡的阶段的数组数量。在存在非线性的情况下,这种边缘状态引起了具有独特稳定性特性的多极拓扑边缘的家族。我们的结果表明,准二维拓扑结构之间的耦合基本上丰富了它们中存在的各种稳定拓扑边缘孤子。
相对于激光束。图 2a 描绘了 FLW 过程的图形表示。FLW 是一种串行制造技术,与光刻相比可能并不适合大规模生产。然而,它的速度和简单性使其成为至少在量子技术等快速发展领域中规模生产的有吸引力的选择。可以实现的折射率变化很小,因此设备不如硅或氮化硅等其他平台那么小型化。然而,FLW 因允许三维电路布局(图 2b-c)、与玻璃以外的各种材料兼容(促进复合设备的混合集成)以及与标准光纤的低损耗连接而脱颖而出。FLW 只是通过超短激光脉冲与透明材料的非线性相互作用实现的几种微加工工艺之一。另一个例子是飞秒激光烧蚀,它可以精确去除材料,从而形成三维微结构,如图 2a 所示的微沟槽。将飞秒激光烧蚀与激光烧蚀相结合,可以提高集成光子器件的性能,例如可编程光子集成电路 [5],它集成了波导、电可编程干涉仪和空心结构,从而实现了非常低的
摘要中红外的光学频率梳是一种强大的气体传感工具。在这项研究中,我们证明了一个简单的中红外双弯曲光谱仪,在Linbo 3波导中覆盖3–4 µm。基于低功率激光器系统,通过linbo 3波导中的脉冲差差频率产生来实现中红外梳子。我们在超脑生成之前构建疗法前的管理,以控制泵和信号脉冲的时空比对。对于3-4 µm idler的产生,超副局部直接耦合到the的定期螺旋的Linbo 3波导中。基于这种方法的中红外双弯曲光谱仪在25 THz覆盖范围内提供了100 MHz的分辨率。为了评估光谱法的适用性,我们使用双梳光谱仪测量甲烷光谱。测量结果与Hitran数据库一致,其中残留的根平方为3.2%。这种提出的方法有望在芯片上开发综合且坚固的中红外双弯曲光谱仪进行感测。
对称性是现代物理的基石之一,在不同领域具有深远的影响。在受对称保护的拓扑系统中,对称性负责保护表面状态,这是这些材料所表现出的迷人特性的核心。当保护边缘模式的对称性破裂时,拓扑阶段就会变得微不足道。通过工程损失破坏了保护拓扑遗产阶段的对称性,我们表明出现了新的真正的非热对称性对称性,它保护并选择了其中一种边界模式:拓扑单层。此外,非富甲系统的拓扑结构可以以更高维度的有效遗产汉密尔顿人为特征。为了证实该理论,我们使用光子晶格研究了非弱者单和二维SSH模型,并在两种情况下都观察到动态产生的单体。我们根据存在并计算相应拓扑不变的(非热)对称性对系统进行分类。
作为从研究到商业部署的硅光子学的过渡,有效地将光线融入高度紧凑和功能性的亚微米硅波导的包装解决方案必须是必要的,但仍然具有挑战性。有助于实现大规模集成的220 nm硅在绝缘子(SOI)平台是铸造厂采用最广泛的集成,从而实现了既定的制造工艺和广泛的光子组合库。因此,该平台的高效,可扩展和宽带耦合方案的开发至关重要。利用两光子聚合(TPP)和基于Fermat原理的确定性自由形式的微观启示设计方法,这项工作表明了标准的SMF-28单模式纤维和硅Wave在220 nmSOI SOI平台上的标准SMF-28单模式纤维和硅波波之间的超高效和宽带3-D耦合器界面。耦合器在基本TE模式下达到了0.8 dB的低耦合损失,而1 dB的带宽超过180 nm。宽带操作可实现从通信到光谱的各种带宽驱动的应用。此外,3-D自由形式耦合器还可以极大地容忍纤维未对准和制造可变性,从而使包装要求放松,以降低成本降低资本利用标准的电子包装过程流量。©2024中国激光出版社
摘要:有效的能量转移对于电磁通信至关重要。因此,生产一个实现宽带的波导耦合器,非反射传输是一项艰巨的任务。随着基于硅的集成光子电路的发展,芯片耦合变得越来越重要。尽管已经开发出各种用于芯片耦合的辅助器,但它们通常具有限制,例如长耦合长度,低耦合效率和狭窄的带宽。这是由于无法消除两个波导之间的反射。在这里,我们介绍了一种使用通用阻抗匹配理论和转换光学的方法,以消除两个波导之间的反射。使用此方法的耦合器称为通用阻抗匹配的耦合器,具有最短的次波长耦合长度,99.9%的耦合效率和宽带宽度。