宽带中红外(IR)超脑激光源对于分子指纹区域的光谱学至关重要。在这里,我们报告了AS 2 S 3-Silica Nansospike Hybrid Waveguides的产生,并在2 s-Silica Nansospike Hybrid波动中产生,由定制的2.8μm飞秒纤维激光器泵送。波导是由压力辅助熔融AS 2 s 3的压力融化到二氧化硅毛细管中形成的,从而可以精确地定制分散体和非线性。连续的相干光谱从1.1μm到4.8μm(30 dB水平)时,在设计波导时会观察到2.8μm在异常的分散体状态中。首次制造和研究了线性锥形的毫米尺度为2 s-3-silica波导,据我们所知,与均匀的波导相比,具有重新的规格相干性,表现出比均匀的波导更宽。由于熔融二氧化硅鞘屏蔽了AS 2 S 3,因此波导被证明是长期的稳定和防水。他们提供了产生宽带MID-IR超孔的替代途径,并在频率计量学和分子光谱中应用,尤其是在潮湿和水性环境中。©2021中国激光出版社
摘要:本文通过Zns薄膜和波导的结构和光学特征,介绍了二阶非线性光子学对二阶非线性光子学的优势。1。引言是由物质辐射相互作用引起的非线性光学现象,这已经得到了很大改善,这已经大大改善了光子设备的开发,可以在基于非线性光学材料的指导结构内强限制电磁场。[1]。到目前为止,只有很少的研究集中在硫化锌(ZNS)上。这种材料对于非线性光学元件来说是有希望的,因为它是电信波长[2]的高折射率,透明度的宽光谱,高第二[3]和三阶非线性系数[4]和多晶结构,并且有可能充分利用非线性过程[5]。从应用的角度来看,ZnS沉积方法的种类(其中一些是低成本)也代表了有趣的技术优势。在这项工作中,我们描述了由磁控溅射沉积的ZnS薄膜的结构和光学特性,以及第一个基于ZnS的波导的制造过程及其线性表征。
研究了两种气体(CO 2)和甲烷(CH 4)的两种气体中的中红外区域的检测,研究了不同的集成光子传感器。这三个研究的结构是基于Chalcogenide膜(CHG)或多孔也(PGE)和基于CHG的Slot波导的山脊波导。优化了波导尺寸,以在导向光和气体之间获得最高功率因数,同时保持在中红外波长范围内的单个模式传播。在CHG山脊波导的情况下,可实现的功率因数为1%,PGE-Ridge为45%,在CHG-Slot的情况下为58%。在λ=4.3μm处的二氧化碳的检测极低(LOD),甲烷在λ=7.7μm下的二氧化碳为0.1 ppm,由于中液范围内的较大的气体吸收系数,可获得CHG SLOT波引导的λ=7.7μm。对于多孔驻驻波导,还计算出低LOD值:CO 2在λ=4.3μm时为0.12 ppm,CH 4在λ=7.7μm处的Ch 4 ppm。这些结果表明,所提出的结构可以在环境和健康感测芯片上实现通用光谱检测所需的竞争性能。
集成量子光子学中的方向性已成为在单光子水平上实现具有非线性的可伸缩量子技术的有前途的途径。拓扑光子波导已被提出是一种在芯片上利用这种定向光 - 物质相互作用的新方法。然而,与常规线缺陷波导相比,嵌入式量子发射器与拓扑波导的定向耦合的强度仍然存在。在这项工作中,我们使用实验,理论和数值分析的组合对一系列波导中的方向耦合进行了研究。我们定量地表征了光照耦合在几个拓扑光子波导上的位置依赖性,并基准了其定向耦合性能与常规线缺陷波导。我们得出的结论是,与传统的线缺陷波导相比,拓扑波导的表现不佳,将其定向光学凭证构成疑问。证明这不是领域成熟的问题;我们表明,最新的逆设计方法,同时能够改善这些拓扑波导的定向发射,但仍将它们显着地落后于常规(滑动平面)光子晶体波导的操作。我们的结果和结论为改善定量预测的量子非线性效应的实施铺平了道路。
摘要中红外的光学频率梳是一种强大的气体传感工具。在这项研究中,我们证明了一个简单的中红外双弯曲光谱仪,在Linbo 3波导中覆盖3–4 µm。基于低功率激光器系统,通过linbo 3波导中的脉冲差差频率产生来实现中红外梳子。我们在超脑生成之前构建疗法前的管理,以控制泵和信号脉冲的时空比对。对于3-4 µm idler的产生,超副局部直接耦合到the的定期螺旋的Linbo 3波导中。基于这种方法的中红外双弯曲光谱仪在25 THz覆盖范围内提供了100 MHz的分辨率。为了评估光谱法的适用性,我们使用双梳光谱仪测量甲烷光谱。测量结果与Hitran数据库一致,其中残留的根平方为3.2%。这种提出的方法有望在芯片上开发综合且坚固的中红外双弯曲光谱仪进行感测。
对称性是现代物理的基石之一,在不同领域具有深远的影响。在受对称保护的拓扑系统中,对称性负责保护表面状态,这是这些材料所表现出的迷人特性的核心。当保护边缘模式的对称性破裂时,拓扑阶段就会变得微不足道。通过工程损失破坏了保护拓扑遗产阶段的对称性,我们表明出现了新的真正的非热对称性对称性,它保护并选择了其中一种边界模式:拓扑单层。此外,非富甲系统的拓扑结构可以以更高维度的有效遗产汉密尔顿人为特征。为了证实该理论,我们使用光子晶格研究了非弱者单和二维SSH模型,并在两种情况下都观察到动态产生的单体。我们根据存在并计算相应拓扑不变的(非热)对称性对系统进行分类。
( K( ) ( ) High VPC1 VPC2 K K K ( K K ) 4 C C C = − = ).VPC1和VPC2的Valley Chern数量相等
将非线性纳米光量设备引入光学频率梳量计量学领域为低功率和芯片集成时钟,高精度频率合成和广泛带宽光谱的新机会。但是,这些进步中的大多数仍被限制在光谱的近红外区域,该区域限制了在紫外线和可见范围内与大量量子和原子系统的频率梳集成。在这里,我们通过引入多段纳米型薄膜硅锂波导来克服这一缺点,这些尼贝特波导将工程性分散和鼠标匹配匹配的匹配结合在一起,从而通过χ(2)和χ(3)非线性的组合进行了有效的超核电生成。只有1,550 nm处的脉冲能量仅90 pj,我们实现了跨越330–2,400 nm的无间隙频率梳覆盖率。从近红外泵到350–550 nm的紫外线 - 可见区域的转化效率为17%,我们对优化的极点结构的建模预测效率更高。通过χ(2)在同一波导中通过χ(2)非线性的谐波生成直接产生载体 - 内玻璃偏移频率,以及在短达350 nm的波长下验证梳子连贯性的手段。我们的结果提供了一种集成的光子学方法,可以创建可见和紫外线频率梳子,以影响精度光谱,量子信息处理和在此重要光谱窗口中的光学时钟应用。
简介:氮化硅(SIN X)具有高折射率和光学透明度,从大约250 nm到7 µm,可以实现跨越紫外线的低损失平面综合设备,直到中型中型。作为一个平台,SIN X受益于晶圆尺度制造,免费的金属氧化物 - 氧化物 - 副导体(CMOS)兼容过程,并且可以针对不同的应用(包括非线性光学功能)定制[1]。但是,与许多集成的光子平台一样,可以在无法使用光栅耦合器时进行处理方面以进行最终耦合。传统的抛光可能会证明是耗时的,尤其是当从晶圆上处理数十个光子设备时,还证明了精确放置的刻面部的挑战。涉及多个薄层不同材料的层压结构,在抛光过程中的波导层的碎屑和分层也导致产量差。近年来,钻石加工通常使用DICING锯,开辟了通往各种脆性材料的光学质量表面的路线[2,3]。在延性状态下的加工可以拆除塑料样的材料,从而导致碎屑下的碎屑低和低表面粗糙度。我们以前已经证明了诸如二氧化硅和硅等散装材料的光学质量加工,以及尼贝特锂中的山脊波导和面的划分[4-7]。在这项工作中,我们将这些技术重新列为二合一质量质量的片段,该平台由多个层(底物 - 氧化物sin x-封顶层)组成,不需要抛光。我们将此技术扩展到了侧向定义的波导,这些波导证明了层压层的精确度,保存和凹入锯技术的低表面碎屑。我们的DICING例程还提供了一个过程来验证延性加工的参数。