摘要 磁共振 (MR) 成像是一种广泛使用的医学成像技术,可生成人体的详细解剖图像。MR 图像的分割在医学图像分析中起着至关重要的作用,因为它可以对各种疾病和状况进行准确的诊断、治疗计划和监测。由于缺乏足够的医学图像,实现精确的分割具有挑战性,尤其是在应用深度学习网络的情况下。这项工作的目的是研究从 T1 加权 (T1-w) 到 T2 加权 (T2-w) MR 序列的迁移学习,以最少的计算资源增强骨骼分割。利用基于激励的卷积神经网络,提出了四种迁移学习机制:无微调的迁移学习、开放微调、保守微调和混合迁移学习。此外,提出了一种使用 T2-w MR 作为基于强度的增强技术的多参数分割模型。这项研究的创新之处在于混合迁移学习方法,该方法克服了过度拟合问题,并以最少的计算时间和资源保留了两种模态的特征。使用 14 张临床 3D 脑 MR 和 CT 图像评估分割结果。结果表明,混合迁移学习在骨分割方面在性能和计算时间方面更胜一筹,DSC 为 0.5393 0.0007。虽然基于 T2-w 的增强对 T1-w MR 分割的性能没有显著影响,但它有助于改进 T2-w MR 分割并开发多序列分割模型。
临床数据仓库 (CDW) 包含数百万患者的医疗数据,为开发计算工具提供了绝佳的机会。磁共振图像 (MRI) 对图像采集过程中的患者运动特别敏感,这将导致重建图像中出现伪影(模糊、重影和振铃)。因此,CDW 中的大量 MRI 被这些伪影破坏,可能无法使用。由于扫描次数太多,无法手动检测它们,因此有必要开发工具来自动排除(或至少识别)带有运动的图像,以充分利用 CDW。在本文中,我们提出了一种从研究到临床数据的新型迁移学习方法,用于自动检测 3D T1 加权脑 MRI 中的运动。该方法包括两个步骤:使用合成运动对研究数据进行预训练,然后进行微调步骤,以将我们的预训练模型推广到临床数据,这依赖于 4045 张图像的标记。目标是 (1) 能够排除具有剧烈运动的图像,(2) 检测轻微的运动伪影。我们的方法在第一个目标上实现了出色的准确率,平衡准确率几乎与注释者的准确率相似(平衡准确率 > 80 %)。然而,对于第二个目标,其表现较弱,远低于人类评分者。总体而言,我们的框架将有助于在医学成像中利用 CDW,并强调对基于研究数据训练的模型进行临床验证的重要性。
通常,交通流量模拟器分为两个主要类别:显微镜和宏观。前者专注于详细的单个车辆行为,而后者则侧重于大规模(例如城市规模)交通的集体行为。介观交通模拟器有时分为宏观的交通模拟器是两者的混合物。尽管他们在某种程度上描述了个人车辆行为,但其主要目的是模拟大规模流量的集体行为。中镜模拟器对于建模大规模的交通管理和操作特别有用,例如拥塞定价,乘车共享和自动化的车队管理,这些天数越来越突出。几个显微镜交通模拟器被发表为开源软件,例如Sumo(Lopez等,2018)。据作者所知,介质和宏观模拟器的可用性是有限的。
卷积神经网络(CNN)受到灵长类动物视觉系统的组织的启发,进而成为视觉皮层的有效模型,从而可以准确预测神经刺激反应。虽然对与大脑相关的对象识别任务进行培训可能是预测大脑活动的重要前提,但CNN的大脑样结构可能已经允许准确预测神经活动。在这里,我们在预测视觉皮层的神经反应方面评估了任务精制和脑部优化的卷积神经网络(CNN)的性能,并进行了系统的架构操作以及受过训练的和未经训练的特征提取器之间的比较,以揭示关键的结构组件影响模型性能。对于人类和猴子区域V1,采用RELU激活函数的随机重量CNN与平均或最大池的结合,显着超过了其他激活函数。随机体重CNN在预测V1响应时与训练有素的对应物相匹配。可以预测V1响应的程度与神经网络的复杂性密切相关,这反映了神经激活功能和汇总操作的非线性。但是,对于与物体识别(例如IT)相关的较高视觉区域,编码性能与复杂性之间的这种相关性显着弱。测试视觉区域之间的这种差异是否反映了功能差异,我们在纹理歧视和对象识别任务上训练了神经网络模型。与我们的假设一致,模型的复杂性与纹理歧视的性能更加密切,而不是对象识别。我们的发现表明,具有足够模型复杂性的随机重量CNN允许将V1活动视为训练有素的CNN,而较高的视觉区域则需要通过梯度下降通过训练获得的精确重量配置。
摘要 - 我们介绍了Point-LN,这是一种针对有效的3D点云分类设计的新型轻量级框架。点-LN整合了必需的非参数组件 - 最远的点采样(FPS),K-Nearest邻居(K-NN)和非可学习的位置编码 - 具有流线的可学习分类器,可以显着增强分类准确性,同时维持最小参数脚部。这种混合架构可确保较低的计算成本和快速推理速度,从而使Point-LN非常适合实时和资源受限的应用程序。在包括ModelNet40和ScanObjectnn在内的基准数据集的全面评估表明,与最先进的方法相比,Point-LN在提供出色的效率的同时,达到了竞争性能。这些结果将点ln建立为一种可靠的可扩展解决方案,用于各种点云分类任务,突出了其在各种计算机视觉应用中广泛采用的潜力。有关更多详细信息,请参见以下代码:https://github.com/asalarpour/point_ln。索引术语 - 3D点云分类,轻量级框架,非参数位置编码,机器学习,计算机视觉
摘要。动态治疗方案(DTR)是一种提供精确药物的方法,该方法使用患者特征来指导治疗方法以实现最佳健康结果。已经提出了许多用于DTR估计的方法,包括动态加权的普通最小二乘(DWOLS),这是一种基于回归的方法,在易于实现的分析框架内具有双重鲁棒性来模拟模型错误指定。最初,DWOL方法是在连续结果和二元治疗决策的假设下开发的。是在临床研究的激励下,随后的理论进步扩大了DWOLS框架,以解决各种结果类型的二元,连续和多酸性处理,包括二进制,连续和生存类型。但是,某些方案仍未开发。本文总结了DWOLS方法的扩展和应用的最后十年,对原始DWOLS方法及其扩展进行了全面而详细的审查,并突出了其多样化的实际应用。我们还探讨了已经解决了与DWOL实施相关的挑战的研究,例如模型验证,可变选择和处理测量错误。使用模拟数据,我们提出了数值插图以及在R环境中的分步实现,以促进对基于DWOL的DTR估计方法的更深入的了解。
固体激光冷却是一项突破性技术,能够以微型方式将温度无振动冷却至 100 K。它似乎是一种很有前途的技术,可以提高未来观测卫星的性能,例如在 SWIR 和 NIR 领域。本文首次研究了在观测卫星上集成激光冷却器。我们的研究侧重于卫星有效载荷和平台级别的尺寸、重量和功率 (SWaP) 标准。其目标是评估在低地球轨道 (LEO) 红外观测任务中使用光学低温冷却器而不是机械低温冷却器的兴趣。提出了一种初步的空间激光冷却器 (LC) 架构。它由两部分组成。第一部分是冷却头,基于最先进的冷却晶体 10%Yb:YLF 和像散多通腔。第二部分是低温冷却器光电子学,基于耦合到冷却头的冗余激光二极管和光纤。考虑到红外探测器的热负荷和低温恒温器内的寄生热通量,估算了小焦平面的冷却功率。然后考虑到晶体效率、热链接损耗和光电效率,估算激光冷却器所需的光功率和电功率。假设一个为期 5 年的 LEO 微卫星任务,则对电力系统(PCDU、太阳能电池阵列、电池)和热控制系统(热管、散热器)进行尺寸计算。增加了额外的质量裕度以考虑机械支撑结构。最后,分别将有效载荷和平台的质量和体积相加,以获得卫星级别的 SWaP 平衡,代表激光冷却器的整体影响。在相同的任务和平台假设下,对微型脉冲管冷却器 (MPTC) 架构重复了该研究。最后,对这两种架构进行了比较。结果表明,即使激光冷却器的功率要求很高,质量和内部体积的减小也使得小型卫星有效载荷成为可能。
方法:在 PubMed、Cochrane、Web of Science、Embase、CNKI 和万方数据库中进行系统搜索,检索日期截至 2024 年 5 月 12 日。纳入干预时间至少为 12 周的随机对照试验 (RCT)。目标人群包括超重或肥胖的个体,无论是否患有 2 型糖尿病。符合条件的研究将多受体药物与安慰剂或其他多受体药物进行了比较。主要结果是减轻体重、糖化血红蛋白 (HbA 1c )、空腹血糖 (FPG)、血压变化和不良事件。使用 Cochrane 偏倚风险工具 (ROB2) 第 2 版评估偏倚风险,并使用频率学派方法进行随机效应网络荟萃分析。使用网络荟萃分析置信度 (CINeMA) 框架评估效果估计的置信度。
Mostefa Ben Naceur、Mohamed Akil、Rachida Saouli、Rostom Kachouri。使用重叠块和多类加权交叉熵,通过基于深度学习的选择性注意实现全自动脑肿瘤分割。医学图像分析,2020 年,�10.1016/j.media.2020.101692�。�hal-02533454�