电弧增材制造 (WAAM) 是一种允许高效原位生产组件或再制造的工艺,它能够以更高的沉积速率和更低的成本进行生产。然而,WAAM 组件在沉积过程中会受到散热的影响,从而导致粗柱状晶粒生长,造成机械性能较差,限制工业应用。因此,本研究调查了将 Al 2 O 3 陶瓷粉末颗粒孕育剂引入 AWS A5.9 ER308LSi 不锈钢壁结构中的作用,通过细化晶粒工艺来提高机械性能。在沉积过程中,当温度降至 150ᵒC 时,手动将 Al 2 O 3 陶瓷粉末颗粒添加到每一层。为了弥补这些知识空白,我们进行了一系列完整的拉伸测试。制造了 WAAM 壁并分析了样品的微观结构。结果表明,WAAM SS308LSi 部件在沉积方向上的最高抗拉强度为 560 MPa,与未接种样品相比增加了 6%。这种改进是由于晶粒细化和异质成核的成功。该研究证明了该技术在 WAAM 部件制造或再制造过程中改善机械性能和微观结构的潜力。
传感技术和数据分析工具的最新进展已显着加速了电弧添加剂制造(WAAM)系统的开发。这种以数据为中心的方法强调了在整个生产过程中可用的传感器数据以优化性能。广泛的数据分析的集成为改善精度,减少废物和提高生产零件的质量提供了机会。此方法依赖于AI/ML模型和优化技术,这些技术是使用从各种来源收集的数据(包括原位传感器,前坐姿成像和制造过程参数)开发的。这些数据的质量和多样性以及不同数据流(通过时空注册实现)之间的对齐对于成功开发AI/ML和优化模型至关重要。在这项工作中,我们提出了在矩形块沉积过程中生成的时空注册数据集。数据集包括对沉积过程,过程参数,焊接特性和原位收集的声学数据的全面描述以及构建的X射线计算机断层扫描数据。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
吊索。例如,钢丝绳吊索的优缺点与制造它的钢丝绳的优缺点基本相同。吊索通常有以下六种类型:链条、钢丝绳、金属网、天然纤维绳、合成纤维绳或合成网。一般来说,使用和检查程序倾向于将这些吊索分为三类:链条、钢丝绳和网以及纤维绳网。每种类型都有各自的优点和缺点。在选择最适合工作的吊索时,应考虑的因素包括要移动的材料的尺寸、重量、形状、温度和敏感度,以及吊索用于救援行动的环境条件。链条和合成网吊索的使用最为广泛。虽然钢丝绳在救援中确实占有一席之地,但它主要用于绞盘作业。定义
摘要。这些年来,工业进步带来了快速、高质量的生产。尽管取得了这些进步,但与此类生产相关的影响,无论是社会影响、经济影响还是环境影响,有时都没有得到广泛的研究。该行业意识到了更环保的方法的重要性,因此,出现了新的可持续技术,如增材制造 (AM)。为了概括 AM 相对于传统制造的环境效益,使用了生命周期评估 (LCA) 等方法。拟议的工作旨在了解和量化与用于制造金属零件的特定 AM 技术(电弧增材制造 (WAAM))相关的环境影响。进行了 LCA,并考虑了相同情况,分析了与生产 3 种不同金属零件相关的环境影响。为了了解获得的结果,同样考虑了也用于制造金属零件的计算机数控 (CNC) 铣削。在这个特定的应用中,与 CNC 铣削相比,WAAM 对环境的影响被证实为 12%-47%,具体取决于所考虑的几何形状。这两种工艺确定的环境热点都是原材料的生产。
摘要:在以线材为原料的各种增材制造技术中,电弧丝增材制造 (WAAM) 具有较高的材料沉积速率,但尚未在锌合金中建立应用。与传统的永久性金属生物材料相比,锌合金可用作可降解生物材料。在这项研究中,采用 WAAM 加工商用纯锌以获得近乎致密的部件,并将通过 WAAM 加工的锌获得的性能与锻造 (WR) 锌样品进行了比较。发现 WAAM (41 ± 1 HV0.3) 部件的微观结构和硬度值与 WR (35 ± 2 HV0.3) 部件的微观结构和硬度值相似。体 X 射线衍射纹理测量表明,与 WR 对应物相比,WAAM 构建物表现出重纹理微观结构,在平行于构建方向 (BD) 的方向上峰值强度约为 <3 3–6 2> 或 <0 0 0 2>。 WAAM(0.45 mmpy)和 WR(0.3 mmpy)样品在模拟体液 (SBF) 中的腐蚀速率相似。在长达 21 天的时间内,WAAM 样品在 SBF 中的重量损失测量值略高于 WR 样品。MC3T3-E1 前成骨细胞在含有 WAAM-Zn 降解产物的培养基中以类似于 WR-Zn 的方式增殖,且表现健康。这项研究证实了通过 WAAM 处理 Zn 以用于生物可吸收金属植入物的可行性。
图 2:典型球/月牙互连的简化表示 自动引线键合机于 20 世纪 80 年代初推出。当时,大多数互连都是使用铝线制作的。随着对高可靠性需求的增加,金线变得更加普遍。随着封装密度的增加,引线互连键合间距减小。细间距的初始解决方案是楔形键合,因为楔形工具设计允许将引线紧密键合(并排)。 细间距互连 在更小的空间内封装更多元件的需求导致 ASIC 设计变得更加密集。人们曾认为,互连细间距封装的最佳方法是通过楔形键合。在 20 世纪 90 年代后期,典型的键合间距从约 110µm 减小到约 90µm。在此期间,平均楔形工具尖端大约是球键合毛细管工具尖端宽度的三分之一。毛细管材料缺乏支持细间距工艺的稳健性。从那时起,改进的材料使细间距设计成为可能,其中尖端尺寸小于 70µm 的情况并不罕见。更小的特征、更高的密度和更多的 I/O 需要细间距。在当今的细间距环境中,任何使用楔形键合机键合的设备都可以使用球焊设备更快地键合。图 3 和图 4 描绘了使用 1.0 mil 导线通过球焊互连的 55µm 细间距架构。
摘要 在各种增材制造 (AM) 技术中,线材和电弧增材制造 (WAAM) 是最适合生产大型金属部件的技术之一,同时也表明其在建筑领域具有应用潜力。目前已有多项研究致力于钢和钛合金的 WAAM,最近,人们也在探索 WAAM 在铝合金中的应用。本文介绍了使用商用 ER 5183 铝焊丝生产的 WAAM 板的微观结构和机械特性。目的是评估平面元件在拉伸应力下可能出现的各向异性行为,考虑相对于沉积层的三个不同提取方向:纵向 (L)、横向 (T) 和对角线 (D)。进行了成分、形态、微观结构和断口分析,以将 WAAM 引起的特定微观结构特征与拉伸性能联系起来。发现试样取向具有各向异性行为,T 试样的强度和延展性最低。造成这一现象的原因在于,微观结构不连续性在拉伸方向上存在不利的方向。拉伸试验结果还表明,与传统的 AA5083-O 板材相比,其整体机械性能良好,表明未来可用于实现非常复杂的几何形状和优化形状,以实现轻量化结构应用。
微型同轴电缆广泛应用于各种精密医疗产品和布线应用,在这些应用中,有限的空间、高可靠性、高灵敏度和出色的信号、电容和阻抗特性非常重要。微型同轴电缆是超声波探头、导管、内窥镜检查、血氧测定系统、传感器、机器人和工业自动化与检测的理想选择。我们提供从 32 到 50 号 (AWG) 的全系列标准尺寸,采用高强度镀银或镀锡铜合金,额定温度为 +200°C。我们的微型同轴电缆是市场领导者,部分原因在于我们专有的高强度合金具有出色的低损耗特性。PFA 电介质和护套材料具有稳定的特性,可实现出色的信号完整性、低损耗和一致的受控阻抗,从而实现直径更小、灵活性和使用寿命更长的电缆。我们的精密布线技术使我们的客户能够使用复杂的线束,同时提供尺寸和性能优势,而不会影响当今的医疗保健或工业标准。
《数字丝绸之路:中国连接世界、赢得未来的探索》及时且通俗易懂地描述了中国迅速崛起为数字超级大国的过程,以及中国取代美国成为世界技术霸权后全球格局的变化。本书探讨了中国 2015 年发布的“数字丝绸之路”白皮书的相关趋势,而这份白皮书本身是中国 2013 年宣布的“一带一路”倡议的延伸。希尔曼结合无线网络、互联网连接设备、互联网主干网和卫星等视角,结合严谨的案例研究,表达了他对中国数字政策的谨慎态度。希尔曼清晰地传达了中国在硬件方面庞大的数字影响力的重要性,使普通读者能够理解中国对海量数据、金融市场和全球通信的潜在无可匹敌的监管的重要性。