b'genation 的 C3 和 C2 位尚未开发。在此,我们报道了一种无催化剂获取 1-芳基 2,3-二碘咔唑 [7,8] 的方法,其中涉及碘转位(方案 1D)。值得注意的是,我们的方案允许在三个连续位置 [9] 即 C1、C2 和 C3 对咔唑核心进行可控官能化。环化前体 (碘吲哚基)炔醇 1a \xe2\x80\x93 n 是使用已知程序由适当的吲哚-2-甲醛制备的。[5] 我们的旅程始于研究苯基取代炔醇 1a 作为模型底物的反应(表 1)。 [10] 我们研究了 1a 与几种碘化试剂(如 I 2 、NIS、ICl 和 Ipy 2 BF 4 )的反应。在碳酸钠存在下,在异丙醇中,在 15 °C 下使用 ICl [11] 可有效实现串联碘环化-碘移位。使用 1.1 倍过量的 ICl 可得到三环 2a ,产率为 50%(表 1,条目 5),而使用 2.5 倍过量的 ICl 可得到所需的杂环,产率为 60%(表 1,条目 3)。通过对粗反应混合物进行 TLC 和 1 H NMR 分析观察到总转化率,未检测到副产物或聚合反应。然而,在柱层析纯化 2,3-二碘-咔唑 2a 的过程中观察到一些分解,这可能是导致分离产率适中的原因。值得注意的是,重排的 1-苯基-2,3-二碘-咔唑 2a 是唯一的区域异构体。使用有机碱代替 K 2 CO 3 或不同的溶剂'
当细胞受到低 LET 辐射(60 Co 约为 0.3 keV/µm)时,大多数 DNA 损伤不是由辐射场与 DNA 的直接相互作用引起的,而是由辐解后的化学反应引起的。因此,辐射化学对于理解电离辐射造成的生物损伤的潜在机制至关重要。蒙特卡洛径迹结构 (MCTS) 代码可以详细模拟细胞等介质中的粒子径迹。几种 MCTS 代码已经进一步开发,具有模拟水的辐解和随后的非均相化学的能力。最初的 MCTS 模拟使用纯水作为目标,并叠加 DNA 几何形状来表征物理相互作用(Charlton 1986)。现在,MCTS 代码已经变得更加复杂,可以将电离辐射的物理化学过程与 DNA 几何模型相结合。
a,b这些作者对摘要摘要摘要大米(Oryza sativa L.)是全球重要的主食。面对气候变化,需要改善水稻的定性和定量特征,满足人口增加的营养需求不断增长。近年来,基因组编辑在谷物作物的优质种类的发展中发挥了重要作用。基因组编辑和速度繁殖提高了水稻育种的准确性和速度。在大米中已经建立了包括基因组编辑在内的新育种技术,从而扩大了作物改善的潜力。在十年中,诸如锌指核酸酶(ZFN),转录激活剂样效应核酸酶(Talens)(Talens)和群集定期间隔短的短质体重复序列(CRISPR)/CRISPR相关蛋白9(CAS9)系统(CAS9)系统使用蛋白质9(Cas9)系统的诸如锌指核酸酶(ZFN)(ZFN),类似于转录激活剂样效应子核酸酶(Talens)(Talens)(CAS9(CAS9),并在赖斯分配中起着非常出色的作用。 此外,最近的其他基因组编辑技术(例如Prime编辑和基础编辑者)也已用于大米中的有效基因组编辑。 由于大米是一个出色的模型系统,因此由于其小基因组和与其他谷物作物的密切合成关系,因此继续开发用于大米的新基因组编辑技术。 采用基因组编辑技术(GET)等基因组改变进行了反向遗传学,已经在农业科学(例如水稻产量和谷物质量改善)方面开辟了新的途径。 这些方法的有效性正在全球研究人员和作物科学家验证。诸如锌指核酸酶(ZFN)(ZFN),类似于转录激活剂样效应子核酸酶(Talens)(Talens)(CAS9(CAS9),并在赖斯分配中起着非常出色的作用。此外,最近的其他基因组编辑技术(例如Prime编辑和基础编辑者)也已用于大米中的有效基因组编辑。由于大米是一个出色的模型系统,因此由于其小基因组和与其他谷物作物的密切合成关系,因此继续开发用于大米的新基因组编辑技术。采用基因组编辑技术(GET)等基因组改变进行了反向遗传学,已经在农业科学(例如水稻产量和谷物质量改善)方面开辟了新的途径。这些方法的有效性正在全球研究人员和作物科学家验证。目前,CRISPR/CAS9技术被研究人员广泛用于基因组编辑,以实现所需的生物学目标,因为它具有简单的定位,易于设计,具有成本效益和多才多艺的工具,用于精确有效的植物基因组编辑。在过去的几年中,通过CRISPR/CAS9技术方法成功编辑了许多与水稻纹理质量和产量相关的基因,以满足全球对食品需求不断增长的需求。在这篇综述中,我们着重于用于水稻改进的基因组编辑工具,以解决取得的进展,并提供大米基因组编辑的例子。我们还讨论了获得无转基因作物的安全问题和方法。
近年来,氧化石墨烯纳米片 (GO) 被广泛研究用作水中多种有机分子和重金属离子的吸附剂。1–3 与其他碳基纳米材料(如标准工业吸附剂活性炭)相比,丰富的表面化学基团加上较大的吸附表面积,使其对几类污染物(包括新兴污染物)的吸附动力学和效率更快。4 这些污染物因其在水体中的持久性、流动性以及健康和环境毒性而备受关注。5–7 GO 纳米片的羧基和羰基在有机分子的吸附效率中起着重要作用,因为它们能够形成氢键和金属离子络合。2,3 此外,可以利用此类表面基团的化学改性来提高选择性吸附能力。例如,据报道,聚乙烯亚胺 (PEI) 改性是一种成功的策略,可以利用 p 堆积、络合和
尽管努力收集基因组学和现象学(“ OMICS”)和环境数据,时空的可用性以及对数字资源的访问仍然限制了我们预测植物对气候变化的反应的能力。我们的目标是通过增强气候数据来提高玉米产量可预测性的提高。大规模实验(例如基因组(G2F))是提供“ OMICS”和气候数据的机会。在这里,目标是:(i)通过使用深层神经网络减少气候数据的差距来改善G2F“ OMICS”和环境数据库; (ii)估计气候和遗传数据库增强对玉米产量通过环境(G×E)建模中基因型中的可预测性的贡献; (iii)量化因气候数据增强,G×E模型的实施以及三个试验选择方案的应用(即随机化,排名和降水梯度)。结果表明,由于气候和“ OMICS”数据库增强,可预测性增加了12.1%。随之而来的协方差结构在所有列车检验方案中证明了协方差结构,表明玉米的产量可预测性有所提高。在“基于随机”的方法中观察到最大的改进,这为模型增加了环境变异性。
全球农业生产是负责营养的主要国际组织越来越关注的。由于人口前所未有的人口增长,全球对粮食的需求不断上升,导致一些人口稠密地区(例如非洲)的粮食不安全。对全球粮食不安全性的另一个促成因素是气候变化及其变异性。世界和非洲农业生产尤其是负责营养的主要国际组织越来越关注。世界粮食计划署报道说,全球人口增长,尤其是近年来在非洲,正在导致粮食安全提高。此外,农民和农业决策者需要先进的工具来帮助他们做出快速决策,以影响农业产量的质量。气候变化一直是近几十年来全世界的主要现象。已经观察到气候变化对农业生产质量的影响。大数据技术的到来导致了新的强大分析工具,例如机器学习,这些工具在许多领域(例如医学,财务和生物学)都证明了自己。在这项工作中,我们提出了一种基于机器学习的预测系统,以预测六种农作物的产量:米,玉米,木薯,种子棉,山药和香蕉,在整个一年中西非国家地区的国家层面。我们结合了气候数据,天气数据,农业产量和化学数据,以帮助决策者和农民预测其国家的每年农作物产量。15%和𝑅2= 89。78%。我们使用了决策树,多元逻辑回归和k-neart的邻居模型来构建我们的系统。使用三个机器学习模型时,我们都有两个模型的结果。我们在整个交叉验证过程中应用了一项超参数调谐技术,以获得更好的模型,该模型不会面临过度拟合。我们发现,决策树模型的性能很好,可以确定(𝑅2)为95。3%,而K-Nearest邻居模型和Logistic回归分别用𝑅2= 93进行。我们还研究了预测结果与预期结果之间的相关性。我们发现,决策树模型的预测结果和K-neartime邻居模型与预期数据相关,这证明了模型的效率。
高粱是发达国家和世界其他地方的主食的一种饲料/工业作物。这项研究评估了高粱迷你核心收集天数,在7-12个测试环境中,多天开花(DF),生物质,植物高度(pH),可溶性固体含量(SSC)和果汁重量(JW)和DF和pH的高粱参考集。我们还分别在迷你核心收集和参考集中分别进行了6 094 317和265 500单核苷酸多态性标记的全基因组缔合映射。在迷你核心面板中,我们确定了DF的三个定量性状基因座,两个用于JW,一个用于pH,一个用于生物质。在参考集面板中,我们确定了6号染色体上pH的另一个定量性状基因座,该特性也与迷你核心面板中的生物质,DF,JW和SSC有关。从该基因座中选择的三个基因的转基因研究表明,当在高粱和甘蔗中过表达时,Sobic.006G061100(SBSNF4-2)增加了生物质,SSC,JW和pH,并且在跨基因高粱中延迟开花。SBSNF4-2编码进化保守的AMPK/SNF1/SNRK1异三聚体配合物的γ亚基。SBSNF4-2及其直系同源物将在植物中生物量和糖产量的遗传增强中有价值。
《制药创新杂志》 2022;SP-11(5): 1105-1109 ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS 评级:5.23 TPI 2022; SP-11(5): 1105-1109 © 2022 TPI www.thepharmajournal.com 收稿日期: 23-02-2022 接受日期: 31-04-2022 Pooja Khinchi 遗传学与植物育种,印度北方邦瓦拉纳西贝拿勒斯印度大学农业科学研究所 HK Jaiswa 遗传学与植物育种,印度北方邦瓦拉纳西贝拿勒斯印度大学农业科学研究所 Aarti Sharma 遗传学与植物育种,印度北方邦瓦拉纳西贝拿勒斯印度大学农业科学研究所 通讯作者 Pooja Khinchi 遗传学与植物育种,印度北方邦瓦拉纳西贝拿勒斯印度大学农业科学研究所
[3]。微藻生物量中碳水化合物的发酵是生产生物燃料的替代途径,尤其是因为某些微藻物种的淀粉,葡萄糖和/或纤维素在干重的基础上超过50%,没有木质素含量[4,5]。已经开发出各种方法将藻类生物量碳水化合物水解成可发酵的化合物[2,6,7]。尽管碳水化合物占干重的40%或更高的微藻生物量,但藻类水解物通常含有低糖浓度。例如,使用H 2 SO 4对小球藻生物量的水解产生了15 g/L的可发酵糖[8]。因此,对糖浓度相对较低的水解物必须有效,以实现高产量,糖转化率和生产力。具有游离细胞的传统发酵在可以实现的糖转换的体积生产率和程度上受到限制。批处理发酵的糖转化率很高,但体积生产力较低,尤其是当考虑排水,清洁和填充生物参与者的时间时。饲料批次发酵可以提高生产率,但仅适用于具有高糖浓度的原料,而生物质水解物并非总是可能的。最后,与游离细胞的连续培养的体积产生性受到生物催化剂的特异性生长速率的限制,尤其是对于糖浓度较低的水解产物。当使用游离细胞时,连续培养中的糖含量也很低。由于细胞保留在反应堆内,与生长速率的解耦操作相比,固定的细胞技术具有比使用自由细胞的固定型生产率明显更高的体积生产率[9,10]。细胞固定还可以促进其他策略,以提高糖至产品转化的产量(碳转化效率)以及下游加工的成本较低[11]。不合理的酵母细胞。