摘要在原核生物和真核先天免疫系统中,TIR结构域是降解关键代谢物NAD +或产生信号分子的NADase。TIR结构域的催化激活需要寡聚,但是在不同的免疫系统中这是如何实现的。在S HORT p rokaryotic ar gonaute(pago) / t ir-a p az(sp Art a)免疫系统中,TIR NADase活性是在引导RNA介导的对v adno dna b y n unkno wn机制中的引导RNA介导的识别的识别。在这里,我们描述了无活性单体和靶DNA激活的四聚体状态中Sp Art a的cry o-em str uct us。单体SP ART A uct ure表明,在没有靶DNA的情况下,Tir-Apaz的C末端尾巴占据了Pago和Tir-ap Az亚基的核酸结合裂缝,抑制SP ART A激活。在活性四聚体SP ART中,引导RNA介导的靶DNA结合置换了C末端的尾巴,并诱导Pago中的构象变化,从而促进了SP ART A-SP ART二聚体。同时释放和一个TIR结构域的旋转使其能够在二聚体内部与另一个TIR结构域形成一个复合的NADase催化位点,并生成一个介导合作四聚体的自相互界面。组合,这项研究提供了对SP ART A的Str UCT架构构建的关键见解,以及靶靶DNA依赖性低聚和催化激活的分子机制。
1 加州大学伯克利分校分子与细胞生物学系;美国加利福尼亚州伯克利市;2 加州大学创新基因组学研究所;3 加州大学伯克利分校加州定量生物科学研究所 (QB3);4 加州大学伯克利分校霍华德休斯医学研究所;美国加利福尼亚州伯克利市;5 加州大学伯克利分校地球与行星科学系;6 加州大学洛杉矶分校分子、细胞和发育生物学系;7 加州大学伯克利分校计算生物学中心;8 加州大学洛杉矶分校霍华德休斯医学研究所;9 格拉德斯通研究所;美国加利福尼亚州旧金山市;10 格拉德斯通-加州大学旧金山分校基因组免疫学研究所; 11 劳伦斯伯克利国家实验室分子生物物理和综合生物成像部;美国加利福尼亚州伯克利市;12 加利福尼亚大学伯克利分校化学系;美国加利福尼亚州伯克利市;
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
门前病毒(Kingdom Bamfordvirae,Realm varidnaviria)是多种病毒的广泛组合,其相对较短的双链DNA基因组(<50 kbp)产生了由双果冻 - 双果冻 - 卷胶卷蛋白构建的二十os虫。前肿瘤动物感染所有细胞结构域的宿主,证明其古老的起源,尤其是与真核生物的七个超级组中的六个有关。前肿瘤分子包括四个主要的病毒组,即Polinton,Polinton,例如病毒(PLV),病毒噬细胞和腺毒。我们使用蛋白质结构建模和分析来表明蛋白质的DNA聚合酶(PPOLBS),polins,病毒噬细胞和细胞质线性质粒涵盖了n-终末结构域与末端蛋白(TPS)的N-末端域同源物(TPS),例如原始prd1-涉及tpectiricotic andototic artectirIdotics和eukaryotic artirIdotics artirIdotic artirIdotic artineciridotics anden tectirifiridotic toNERIFIRIDICRIDOTICSIRIATICS -ETENIRIDOTIOTICTIRIDOTOCTIOTICTIRIDS复制启动,以病毒卵巢肿瘤 - 类半胱氨酸去泛素酶(votu)结构域为由。投票域可能是导致TP从大型PPOLB多肽裂解的原因,并且在腺毒中被灭活,其中TP是单独的蛋白质。许多PLV和转囊编码了Polinton的独特衍生物 - 例如保留TP,Fotu和PPOLB聚合棕榈域的PPOLB,但缺乏外核酸酶域,而含有一个超家族1个旋转酶结构域。分析了在真核前肿瘤前胞菌中,对投票域的存在/不存在和将PPOLB用其他DNA聚合酶代替,使我们能够概述其起源和进化的完整情况。
这是一门面向博士生、硕士生和高年级本科生的高级课程,旨在加深对遗传学的了解。本课程涉及主要文献阅读、分析和讨论。课程结构更接近“翻转课堂”:学生将在课前阅读指定的论文和评论。课堂体验主要包括由教师主持、鼓励和澄清的学生之间的有机互动讨论。很少(如果有的话)使用幻灯片,但学生演示除外,主要基于幻灯片。论文将根据学生的兴趣进行选择,提供经典和最新出版物的组合,并将涵盖前沿主题。发表的精彩论文可能会立即在课堂上部署和讨论。课程的第一部分将涉及掌握工具和行业技巧。第二部分将涉及学生演示。当我们讨论论文时,深刻的概念就会浮现出来。讲师:Nitin Phadnis 博士,Biol 212,(801) 585-0493,nitin.phadnis@utah.edu 讲座:周一、周三、周五 11:50 AM-1:45 PM,JTB 230 办公时间:我很高兴与学生单独会面;只需联系我安排预约即可。通常也可以顺便到我的办公室或实验室 (212 Biol) 与我交谈。但是,上课前的早晨通常不是好时机。助教:Bailey Landis bailey.landis@utah.edu 讨论会:周五,下午 3:00-4:00 教科书:《遗传学分析简介》,第 12 版,Griffiths 等,Macmillan Learning。之所以选择这本书,是因为您可能在 BIOL 2030 中使用过它并且已经有了一本。您可以使用任何较新的遗传学教科书作为参考。考试和评分:讲师将根据他们对遗传学高级知识和应用水平的评估来计算成绩。权重如下:30% 小组展示 1 30% 小组展示 2 30% 课堂问题 10% 参与和积极参与 所有分数将标准化为上述权重。例如,如果您在课堂问题上获得 100/100 分,这些分数将成为您最终成绩的 30 分。课堂问题将包括指定阅读材料中的问题。参与和积极参与提供分数,因为这门课依靠同伴学习、探究性提问、分析和个人研究来创造一个充满活力的学习环境。 A:92% A-:88% B+:84% B:80% B-:76% C+:72% C:66% C-:60% D:50% E:≤50% 请注意 — — 大学的政策是,如果学生表现不佳或成绩不达标,则不会给予不完整成绩。
地热春季生态系统作为极端栖息地,对其微核群落施加了巨大的环境压力。然而,关于不同栖息地和温度梯度的地热生态系统中微核群落稳定性的现有研究仍然受到限制。在这项研究中,我们将高通量18S rDNA测序与环境因素分析结合使用,以研究泥沙中泥沙中微神经群落和水样在西部层中不同温度梯度的36个地热弹簧中的微神经群落环境变化的共发生模式,组装机制以及对环境变化的反应。结果表明,随着温度的升高,沉积物中微核群落的网络稳定性显着改善,而水社区的稳定性下降。沉积物和水中的微核群落的组装机制主要是由随机过程中的不主要过程驱动的。纬度和经度是影响沉积物社区组成变化的关键因素,而水温和电导率是影响水社区组成的主要环境因素。此外,地热群落网络的稳定性与其对外部干扰的反应密切相关:在相对稳定的环境中,沉积物群落表现出更高的抗扰性抵抗力,而受环境变化(例如水流和降水)影响的水社区表现出更大的动态变异性。这些发现不仅增强了我们对地热弹簧中微核群落的生态适应性的理解,而且还提供了对极端环境中微生物如何应对外部骚扰的宝贵见解。这对于理解微核社区如何在高度动态和压力的环境条件下保持生态稳定尤其重要。
摘要:近年来,越来越多地探索了构成宿主体内微生物和宿主体内微生物社区之间关系的性质。微生物,包括细菌,古细菌,病毒,寄生虫和真菌,经常与宿主共同发展。在人类中,微生物群的结构和多样性根据宿主的免疫力,饮食,环境,年龄,生理和代谢状况,医学实践(例如抗生素治疗),气候,季节和宿主遗传学而有所不同。最近下一代测序(NGS)技术的出现增强了观察能力,并可以更好地理解微生物群中不同微生物之间的关系。宿主与其微生物群之间的相互作用已成为对公共卫生应用具有治疗和预防兴趣的微生物研究领域。本综述旨在评估原核生物和真核群落之间相互作用的当前知识。在分析了研究中使用的元基因组方法的简要描述后,我们总结了可用出版物的发现,描述了细菌群落与原生动物,蠕虫,蠕虫和真菌之间的相互作用,在实验模型中或在人类中或在人类中。总体而言,我们观察到在某些微生物可以改善宿主的健康状况的情况下,有益的影响存在,而其他微生物的存在与病理学有关,从而导致对人类健康的不利影响。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月8日。 https://doi.org/10.1101/2025.01.08.631726 doi:biorxiv preprint
silvia.onesti@elettra.eu解旋酶是必不可少的,无处不在的酶,在各种细胞过程中起着关键作用,从DNA复制到修复,重组以及RNA翻译和运输。由于它们在病毒,细菌和真核细胞中的重要作用,它们正成为一类新的抗菌,抗病毒和蚂蚁癌药物靶标。通过解决/重塑各种非典型的DNA结构(例如G-四链体,Triplexe,holliday连接器,以及流离失所环(D-ROOPS和R-Loops))来发挥专业和特定功能:在这些主要作用中,有两个家族由Helicases of Helicases of Helicases of Helicases of Helicases formals of Family,扮演的是helicase of Helicases famessemass famesse formals formemase forme of Helicase,Floop femers of Helicases,Floops。含有FES群体的解旋酶无处不在,但其确切的作用机理知之甚少。特别是,对于FANCJ,DDX11和RTEL1,没有任何与医学上的与医学上的成员相关的结构信息。固有构象柔韧性,FES群集的稳定性和大小的结合使它们具有挑战性的结构生物学目标。
基因组对于理解微生物生态学和进化至关重要。高通量、长读长 DNA 测序的出现使得从环境样本中大规模恢复微生物基因组成为可能。然而,由于这些环境极其复杂,扩大土壤和沉积物的微生物基因组目录一直具有挑战性。在这里,我们对在丹麦收集的 154 个土壤和沉积物样本进行了深度、长读长纳米孔测序,并通过优化的生物信息学流程恢复了 15,314 个新微生物物种的基因组,其中包括 4,757 个高质量基因组。恢复的微生物基因组涵盖 1,086 个新属,并为 612 个先前已知的属提供了第一个高质量参考基因组,将原核生物生命树的系统发育多样性扩大了 8%。长读长组装体还能够恢复数千个完整的 rRNA 24 操纵子、生物合成基因簇和 CRISPR-Cas 系统,而这些系统在之前的陆地基因组目录中都未被充分代表且高度碎片化。此外,将恢复的 MAG 整合到公共基因组数据库中可显著提高土壤和沉积物宏基因组数据集的物种级分类率,从而增强陆地微生物组表征。通过这项研究,我们证明了长读长 29 测序和优化的生物信息学能够以经济高效的方式从高度复杂的生态系统中恢复高质量的微生物 30 基因组,而生态系统仍然是最大的未开发生物多样性来源,可用于扩展基因组数据库和填补生命之树的空白。32