专业经历 2023/02-,美国交通部(DoT)大学交通中心(UTC)第一级中心主任:美国交通部交通网络安全高级研究与教育中心(CYBER-CARE) 2022/09-,美国休斯顿大学信息科学技术系副教授 2015/08-,美国休斯顿大学网络、软件与系统实验室主任 2015/08-2022/08,美国休斯顿大学信息科学技术系助理教授 2018/07,美国橡树岭国家实验室学术访问学者,邀请人:潘崇乐博士 2013/11-2015/06,美国博伊西州立大学计算机科学系研究助理,指导老师:徐殿祥博士 2013/1-2013/10,美国国家金融保护中心研究助理基础设施,达科他州立大学,美国,导师:Dianxiang Xu 博士 09/2012-12/2012,学术访问学者,贝尔法斯特女王大学电子、通信和信息技术学院,英国,导师:Alan Marshall 博士 09/2011-08/2012,研究员,伦敦帝国理工学院 CMR 部门,导师:David Firmin 博士 05/2011-07/2011,访问学者,墨尔本大学 e-Research 组,澳大利亚,导师:Richard O. Sinnott 02/2001-08/2013,副教授(05/2010-08/2013),讲师(05/2005-04/2010),助理讲师(02/2001-04/2005),西北大学软件与微电子学院中国理工大学
螨虫杰出纸奖,ACM IMWUT 2024。观看嘴的荣誉奖,ACM Chi 2024。Forceight演示荣誉奖,ACM UIST 2022。手工接口的荣誉奖,ACM CHI 2022。杰出的光丝纸奖,ACM IMWUT 2021。fibrosight ++的决赛入围者,由2021年设计奖快速公司创新。Wireality的最佳纸张奖,ACM CHI 2020。荣誉提及2020年设计奖Actitouch,快速公司创新。荣誉奖奖学金是姿势吸引笔+触摸互动,ACM CHI 2019。Interferi荣誉奖,ACM CHI 2019。荣誉提及2019年设计奖纸浆,快速公司创新。Wall ++的最佳纸张奖,ACM Chi 2018。荣誉提名奖励奖,ACM UIST 2018。Lumiwatch的决赛入围者,2018年设计奖快速公司创新。高通创新奖学金获奖者,2017年。合成传感器的决赛入围者,2017年设计奖快速公司创新。Skintrack荣誉奖,ACM Chi 2016。人们选择Skintrack的最佳谈判,ACM Chi 2016。最佳的短纸,用于量化屏幕上静电触觉的好处,ACM为2015年。
描述无限投影纠缠对态 (iPEPS) 是一种用于二维量子晶格模型的张量网络状态假设。可以利用对称性来降低数值成本并研究具有不同对称性的量子态。值得注意的是,我们的计算表明,t 1 - t 2 Hubbard 模型的 SU (2) 对称均匀态的能量低于先前发现的 U(1) 条纹。
编辑服务:水过程工程杂志,编辑委员会成员。Explora环境和资源,环境科学的编辑委员会成员,副编辑。可持续性,客座编辑。手稿的同伴评论:植物科学水研究环境国际环境科学的趋势:全环境分离和纯化技术化学层环境化学的环境毒理学和化学环境工程工程工程学环境科学研究杂志,纳米工程杂志,纳米环境工程杂志,纳米环境毒理学和化学杂志,纳米环境毒理学和化学工程杂志,植物生理学和生物化学州际技术与监管委员会(ITRC)为PFAS项目的文件写作做出了贡献(2023年12月至2025年12月)
我的学术培训和研究经验为我提供了多个生物学学科的良好背景,包括分子生物学,生物化学,显微镜和计算建模。作为一名本科生,我与加州大学伯克利分校的Song Li博士进行了研究,以了解细胞干的生物物理决定因素,lbnl的Dilworth Parkinson博士使用X射线微观学在3-D中可视化复杂的生物学材料,并与哥伦比亚的Edward Guo At Columbia博士了解生物力学力量的生物力学力量。作为UCSD的博士生与Jin Zhang博士,我的研究重点是了解如何通过开发和部署基于荧光的生物传感器来编码信号传导特异性。使用蛋白质和基因工程技术,我开发了一类新的生物传感器,这些生物传感器可以测量蛋白质枢纽周围的天然信号传导动力学和具有双位动态范围的生化活性指标。使用这些技术,我探测了多效信号分子如何通过时空组织编码特异性。例如,我发现了PKA调节亚基RIα的液态液相分离,该液体是CAMP/PKA信号的主要组织者,并且该系统在肝癌中受到破坏。在此期间,我获得了几个奖项,以资助我的研究,例如NSF GRFP。
我,张洪波,1982年4月出生于中国东北的一个小镇。高中毕业后,我考入上海复旦大学,主修生物学。从此,我开始意识到生命的美妙,踏上了求学之路。我加入了一个实验室,参与了一个分析加拿大一枝黄花基因模式的项目,以了解其入侵机制。我们需要去野外采集样本,并进行多个步骤的提取和分析。这是我第一次真正感受到研究是什么。获得学士学位后,我决定出国开阔视野,于是我来到了赫尔辛基大学。我在那里呆了7年,完成了我的生物技术硕士学位和药物化学博士学位。我继续我的学业,来到了哈佛大学,在David A. Weitz教授的实验室担任博士后研究员,主攻物理和工程学。在哈佛大学之前,我曾参观过英国伦敦帝国理工学院的生物医学工程实验室和比利时根特大学的生物材料实验室。因此,我的培训内容非常多元化。
[1] Hongye Zhang,Min Yao,Kevin Kails,Philip Machura,Markus Mueller,Zhenan Jiang,Ying Xin和Quan Li*,“在广泛频段上HTS覆盖的导体中电磁损耗的建模”,SuperCond。SCI。 Technol。,卷。 33,否。 2,205004,2020。 https://iopscience.iop.org/article/10.1088/1361-6668/ab6022/meta。 [2] Hongye Zhang*,Philip Machura,Kevin Kails,Hongyi Chen和Markus Mueller*,“高速同步机器的HTS涂层导体,堆栈和线圈的动态损失和磁化损失,” SuperCond。 SCI。 Technol。,卷。 33,否。 8,084008,2020。 (重点介绍Jan Evetts Susta奖2020年)https://iopscience.iop.org/article/10.10.1088/1361-6668/ab9ace/meta。 [3] Hongye Zhang*和Markus Mueller,“高速旋转机器的高频横向场下弯曲的HTS曲面的电磁特性”,SuperCond。 SCI。 Technol。,卷。 34,否。 4,045018,2021。 https://iopscience.iop.org/article/10.1088/1361-6668/abe4b6/meta。SCI。Technol。,卷。33,否。2,205004,2020。https://iopscience.iop.org/article/10.1088/1361-6668/ab6022/meta。[2] Hongye Zhang*,Philip Machura,Kevin Kails,Hongyi Chen和Markus Mueller*,“高速同步机器的HTS涂层导体,堆栈和线圈的动态损失和磁化损失,” SuperCond。SCI。 Technol。,卷。 33,否。 8,084008,2020。 (重点介绍Jan Evetts Susta奖2020年)https://iopscience.iop.org/article/10.10.1088/1361-6668/ab9ace/meta。 [3] Hongye Zhang*和Markus Mueller,“高速旋转机器的高频横向场下弯曲的HTS曲面的电磁特性”,SuperCond。 SCI。 Technol。,卷。 34,否。 4,045018,2021。 https://iopscience.iop.org/article/10.1088/1361-6668/abe4b6/meta。SCI。Technol。,卷。33,否。8,084008,2020。(重点介绍Jan Evetts Susta奖2020年)https://iopscience.iop.org/article/10.10.1088/1361-6668/ab9ace/meta。[3] Hongye Zhang*和Markus Mueller,“高速旋转机器的高频横向场下弯曲的HTS曲面的电磁特性”,SuperCond。SCI。 Technol。,卷。 34,否。 4,045018,2021。 https://iopscience.iop.org/article/10.1088/1361-6668/abe4b6/meta。SCI。Technol。,卷。34,否。4,045018,2021。https://iopscience.iop.org/article/10.1088/1361-6668/abe4b6/meta。
摘要:整数和分数量子厅效应(IQHE和FQHE)从1980年代开始引起了很多关注。通常,FQHE的实现需要一个大的磁场(以20特斯拉的阶段为单位)。理论家提出了FQHE在平坦的Chern频段中没有任何磁场的实现,但在传统的固态系统中显然具有挑战性。在这次演讲中,我将在过去六年中在Moiré材料的新领域中介绍理论和实验性努力,最终实现了这一目标。可以通过简单地将两个二维层(例如石墨烯)换一个小角度来产生moiré超晶格。可以从如此简单的设置中出现诸如量子厅物理等物理学(例如量子霍尔物理学)的相当惊人的相关物理。我将特别强调我们的量子异常晶体晶体理论,以解释MIT的Long Ju's Group在Pentalyer石墨烯中观察到的QHE。