图 1 DSB 修复途径总览 .DSB 发生后 , Ku70-80 会最先结合上来 , 如果不发生末端切除 , 会继而招募 DNA-PKcs, ligase IV, XRCC4 等 cNHEJ 核心因子介导 cHNEJ 修复途径 .如果末端发生 MRN-CtIP 介导的末端切除 , 则会产生 ssDNA 抑制 cNHEJ 修复途 径 .短程切除和长程切除产生的 ssDNA 可以通过链内退火进行修复 , 分别被称为 alt-EJ 和 SSA.长距离切除产生的 ssDNA 也可以 在 BRCA2-PALB2-BRCA1 复合体的帮助下和 RAD51 形成核蛋白纤维 , 进行同源找寻和连入侵过程 , 从而进入 HR 修复途径 .HR 途径又可以分为 BIR, SDSA 和 DSBR Figure 1 Overview of DSB repair pathways.The broken ends are first recognized and bound by Ku70-80.Without end resection, other cNHEJ core factors, such as DNA-PKcs, ligase IV, XRCC4, would be recruited to DSBs to mediate cNHEJ pathway.When MRN-CtIP-mediated resection occurs, the generated ssDNA will inhibit cNHEJ pathway.ssDNA from short-range and long-range resection can anneal in-strand to resolve the damages, termed Alt-EJ and SSA, respectively.ssDNA from long-range resection can also be bound by RAD51 to form nucleoprotein filament under the help of BRCA2-PALB2-BRCA1 complex.Nucleoprotein filament carry out homologous searching and strand invasion, promoting HR pathway.The HR pathway could be divided into BIR, SDSA and DSBR
机器人手臂任务中的感知技术。通过分析机器人臂的运动学并设计双臂合作系统,将视觉点云技术结合起来,实现双臂合作握把,并通过使用ROS平台来验证合作社CON-TROL策略的有效性,从而构建双臂臂系统的实验平台。主要研究内容包括分析机器人ARM运动学的正和反向运动学模型,视觉点云识别在双臂合作任务中的应用,双臂合作控制策略的实现以及合作掌握的实验结果和分析。通过这项研究,成功设计和实现了基于ROS的双机器人臂合作感,并实现了双臂合作控制策略的有效性。
达里乌斯(Div> Darius)一直专注于全球智能保健产品的制造已有10多年的历史,并积累了超过1000万单位的保健产品。目前,该公司有16个§ĉĉáì¶çĭ。 Öîtouminstrecoustout。
当需要一个低噪声 ,超 稳定 , 高分辨率的偏置电 压时 , DC205 是您正确的选择 。 它的双极四象限 输出可提供具微伏分辨率的高达 100 伏电压。其 电流可达 50 mA 。在 4 线模式下 ( 远程感测 ), 此仪器会校正引线电阻 , 从而为您的负载提供 准确的电势。 DC205 在 24 小时内的输出稳定性 为出色的 ±1 ppm 。 采用线性电源 , 用户完全无 需担心高频噪声。
抽象的药物组合疗法在解决肿瘤异质性问题时在许多方面都优于单一治疗癌症治疗。对于湿lab实验,由于可能的药物对搜索空间,筛选新型的协同药对具有挑战性。因此,已经开发了计算方法来预测具有潜在协同功能的药物对。尽管当前模型取得了成功,但对其他数据集的概括的力量以及了解化学化学相互作用或化学样本相互作用机制的理解是缺乏研究,从而阻碍了实际应用的当前算法。在本文中,我们提出了一种基于多头注意力机制的DTSYN(药物对协同预测的双变压器模型)的深神经模型,以鉴定新的药物组合。我们设计了一种细粒状变压器,用于捕获化学下结构基因和基因 - 基因关联以及一种用于提取化学化学化学和化学细胞线相互作用的粗粒状变压器。dtsyn在曲线(ROC AUC)下达到了最高的接收器工作特征区域,为0.73,0.78。0.82和0.81在四个不同的交叉验证任务上,表现优于所有竞争方法。此外,DTSYN在五个独立数据集中实现了最佳的真实正率(TPR)。消融研究表明,两个变压器块都导致了DTSYN的性能。此外,DTSYN可以在化学物质和细胞系之间提取相互作用,这可能代表了药物作用的机制。因此,我们设想模型是通过使用化学物质和转录组数据来确定协同药物对优先级的有价值工具。
注释: 1.B 级温度范围为 -40 ℃ ~+85 ℃。 2.这些数据是按最初设计的产品发布的。 3.一次校准实际上是一次转换,因此这些误差就是表 1 和表 3 所示转换噪声的阶数。这 适用于在期望的温度下校准后。 4.任何温度条件下的重新校准将会除去这些漂移误差。 5.正满标度误差包括零标度误差 ( Zero-Scale Error )(单极性偏移误差或双极性零误 差),且既适用于单极性输入范围又适用于双极性输入范围。 6.满标度漂移包括零标度漂移 (单极性偏移漂移或双极性零漂移)且适用于单极性及 双极性输入范围。 7.增益误差不包括零标度误差,它被计算为满标度误差——对单极性范围为单极性偏移 误差,而对双极性范围为满标度误差——双极性零误差。 8.增益误差漂移不包括单极性偏移漂移和单极性零漂移。当只完成了零标度校准时,增 益误差实际上是器件的漂移量。 9.共模电压范围:模拟输入电压不超过 V DD +30mV ,不低于 GND-30mV 。电压低于 GND-200mV 时,器件功能有效,但在高温时漏电流将增加。 10.这里给出的 AIN ( + )端的模拟输入电压范围,对 TM7706 而言是指 COMMON 输入 端。输入模拟电压不应超过 V DD +30mV, 不应低于 GND-30mV 。 GND-200mV 的输入 电压也可采用,但高温时漏电流将增加。 11.VREF=REF IN ( + )- REF IN ( - )。 12.只有当加载一个 CMOS 负载时,这些逻辑输出电平才适用于 MCLK OUT 。 13.+25 ℃时测试样品,以保证一致性。 14.校准后,如果模拟输入超过正满标度 , 转换器将输出全 1, 如果模拟输入低于负满标度, 将输出全 0 。 15.在模拟输入端所加校准电压的极限不应超过 V DD +30mV 或负于 GND - 30mV 。 16.当用晶体或陶瓷谐振器作为器件的时钟源时 (通过 MCLK 引脚 ), V DD 电流和功耗 随晶体和谐振器的类型而变化 (见“时钟和振荡器电路”部分)。 17.在等待模式下,外部的主时钟继续运行, 5V 电压时等待电流增加到 150 μ A , 3V 电 压时增加到 75 μ A 。当用晶体或陶瓷谐振器作为器件的时钟源时,内部振荡器在等待 模式下继续运行,电源电流功耗随晶体和谐振器的类型而变化 (参看“等待模式” 一节)。 18.在直流状态测量,适用于选定的通频带。 50Hz 时, PSRR 超过 120dB (滤波器陷波 为 25Hz 或 50Hz )。 60Hz 时, PSRR 超过 120dB (滤波器陷波为 20Hz 或 60Hz )。 19.PSRR 由增益和 V DD 决定,如下:
《中国科学报》: 如果存在撞击地球的风险, 在不加干预的情况下,这颗小行星可能落在地 球的哪个位置,造成多大的伤害? 李明涛: 这颗小行星大概率不会直接落在 地球表面,而是在空中就解体。 如果落于地球,最大的可能性是落进海里。 根据目前我们计算出的陨落带,2024 YR4 理论 上会陨落在南美洲- 非洲- 南亚这个条带,而在 这个条带里,海洋占据相当大比例。如果陨落在远 海,那么对人类社会应该没有太大影响;如果陨落 在近海,可能会引发海啸,使海滨城市受到影响。 如果陨落在陆地上,小行星在空中解体时 产生的冲击波、热辐射、光辐射等,有可能摧毁 一个中等城市面积的区域。 1908 年,通古斯大爆炸摧毁了俄罗斯西伯 利亚通古斯河附近地区约2000 平方公里的针叶 林。爆炸的“肇事者”可能是一个直径约65 米左 右的小天体。 2013 年,一个直径约20 米的小行 星撞击地球后,在俄罗斯车里雅宾斯克上空二 三十公里处爆炸,爆炸当量相当于约30 颗原子 弹,导致当地近1500 人受伤、3000 栋房屋受损, 损失大概为2 亿元左右。 如果按照以上事件推算,2024 YR4 倘若落 在城市区,可能会摧毁一座中等城市,导致上万 人受伤,经济损失可能远远超过车里雅宾斯克 事件。 《中国科学报》: 按照人类现有技术,能够采 取哪些措施? 李明涛: 目前最成熟的技术手段是发射航 天器,高速撞击小行星,使其改变轨道,与地球 擦肩而过。 2022 年,美国国家航空航天局 (NASA)的“双小行星重定向测试”(DART)任 务已经验证了人类有能力改变小行星轨道。
摘要一种未来的人造视网膜,可以恢复盲人的高敏度视力,将依靠能够使用自适应,双向和高分辨率设备来读(观察)和写入(观察)和写(控制)神经元的尖峰活动。尽管当前的研究重点是克服构建和植入这种设备的技术挑战,利用其能力来实现更急性的视觉感知也将需要实质性的计算进步。使用Ex Vivo多电极阵列实验室原型使用高密度的大规模记录和刺激,我们构成了一些主要的计算问题,并描述了当前的进度和未来解决方案的机会。首先,我们通过使用从大型实验数据集中学到的低维变异性变异性的低维歧管来确定盲视网膜自发活动的细胞类型和位置,然后有效地估计其视觉响应特性。第二,我们通过通过电极阵列传递电流模式来估计对大量相关电刺激的视网膜响应,尖峰对产生的记录进行排序,并使用结果来开发诱发响应的模型。第三,我们通过在视觉系统的整合时间内暂时抛弃各种电刺激的收集来重现给定的视觉目标的所需响应。一起,这些新颖的方法可能会在下一代设备中大大增强人造视力。
Confidential©2021 Presentation on "One Sun One World One Grid : Energy Integration in South Asia "/Rajiv Ratna Panda/Associate Director/SARI-EI-IRADE/Clean Energy Ministerial Regional and Global Energy Interconnection (RGEI) initiative/AtlanticCouncil.org/4th March,2021, 4.30 PM IST ISTS-Inter-State Transmission