多年来,我们亥姆霍兹一直致力于研究和开发未来的生物医学技术。我们的亥姆霍兹中心现在正在汇集他们的专业知识,开展“亥姆霍兹生物医学工程”计划。通过这种方式,我们旨在深化跨学科思想交流,加速产品发现和开发以及创建公司。为此,我们与行业密切合作,促进创业,并支持生物医学初创企业。我们还投资于新一代生物工程师的培训:我们不仅为他们提供进行出色研究的理想条件,还将在专业博士课程和基本商业模式中教授他们必要的创业知识。同时,需要解决重要的伦理问题,例如人类、农作物和牲畜基因改造的后果。该网络将透明地向公众通报这些主题,从而发起社会讨论并提供科学支持。
PIER 研究生周是针对 PIER 研究领域的博士生举办的跨学科研讨会和讲座周,每年举办一次。国内和国际演讲者提供广泛的入门和重点课程,涉及粒子和天体粒子物理学、纳米科学、光子科学以及感染和结构生物学等研究领域。每门课程都是连续四天的讲座和/或研讨会。入门课程专为希望了解更多相关研究领域的博士生而设计,而重点课程则是针对各自研究领域的博士生的深入课程。研究生周主要针对博士生,但也邀请感兴趣的硕士生和博士后参加。该计划还包括一些软技能课程、科学座谈会和商业讲座。
由亥姆霍兹能源出版 亥姆霍兹能源办公室 卡尔斯鲁厄理工学院 Kaiserstraße 12 76131 Karlsruhe 电子邮件:helmholtzenergy@sts.kit.edu https://energy.helmholtz.de/ 请引用为:亥姆霍兹能源 (2024):亥姆霍兹能源转型路线图 (HETR)。卡尔斯鲁厄。 DOI:10.5445/IR/1000172546 项目负责人:Holger Hanselka,亥姆霍兹能源副总裁,任期至 2023 年 Bernd Rech,亥姆霍兹能源副总裁,任期 2023 年 主要作者(按字母顺序排列):Mark R. Bülow 1 、Andrey Litnovsky 2 、Andrea Meyn 3 、Robert Pitz-Paal 1 , Witold-Roger Poganietz 4 , Sebastian Ruck 4 , Dominik Soyk 3 , K. Gerald van den Boogaart 5 贡献作者(按字母顺序排列) : Heike Boos 3 , Roland Dittmeyer 4 , Helmut Ehrenberg 4 , Maximilian Fichtner 4 , Olivier Guillon 2 , Veit Hagenmeyer 4 , 帕特里克·约赫姆 1 , Thiemo Pesch 2 , Ralf Peters 2 , Rutger Schlatmann 6 , Sonja Simon 1 , Robert Stieglitz 4 , Roel van de Krol 6 致谢:我们感谢以下科学家的贡献(按字母顺序排列):Alejandro Abadías-Llamas 5 , Fatwa F. Abdi 6 , Syed Asif Ansar 1 , Armin Ardone 4 , 克里斯托夫·阿恩特 1 , 塔贝阿恩特 4 , 克里斯托弗·鲍尔 2 , 鲍凯宾 4 , 沃纳·鲍尔 4 , 丹·鲍尔 1 , 曼努埃尔·鲍曼 4 , 沃尔夫冈·贝尔 2 , 克里斯托夫·布拉贝克 2 , 乌尔特·布兰德-丹尼尔斯 1 , Seongsu Byeon 1 , 索尼娅·卡尔南 6 , 莫妮卡·卡尔森 2 , 伊西多拉切基奇-拉斯科维奇 2 , 迈克尔·齐佩雷克 2 , 曼努埃尔·达门 2 , 鲁迪格-A。 Eichel 2 , Ghada Elbez 4 , Ursel Fantz 7 , Dina Fattakhova-Rohlfing 2 , Egbert Figgemeier 2 , Kevin Förderer 4 , Stefan Fogel 5 , K. Andreas Friedrich 1 , Giovanni Frigo 4 , Axel Funke 4 , Siddhartha Garud 6 , Hans-Joachim Gehrmann 4 , Stefan Geißendörfer 1 , Hans C. Gils 1 , Valentin Goldberg 4 , Vaidehi Gosala 1 , Thomas Grube 2 , Martina Haase 4 , Uwe Hampel 5 , Benedikt Hanke 1 , Ante Hecimovic 7 , Heidi Heinrichs 2 , Peter Heller 1 , Wolfgang Hering 4 ,米凯拉·赫尔 1、马克·希勒4 , Tobias Hirsch 1 , Carsten Hoyer-Klick 1 , Judith Jäger 1 , Thorsten Jänisch 1 , Christian Jung 1 , Thomas Kadyk 2 , Olga Kasian 6 , Shaghayegh Kazemi Esfeh 1 , Peter Klement 1 , Christopher Kley 6 , Markus Köhler 1 , Thomas Kohl 4 , Manfred Kraut 4 , Ulrike Krewer 4 , Uwe G. Kühnapfel 4 , Felix Kullmann 2 , Arnulf Latz 4 , Thomas Leibfried 4 , Ingo Liere-Netheler 1 , Guido Link 4 , Jochen Linßen 2 , Yan Lu 6 , Kourosh Malek 2 , Florian Mathies 6 , Jörg马太斯 4 , 马修·梅尔 6 , Wided Medijroubi 1 , Wolfgang Meier 1 , Matthias Meier 2 , Norbert H. Menzler 2 , Wilhelm A. Meulenberg 2 , Nathalie Monnerie 1 , Dulce Morales Hernandez 6 , Michael Müller 2 , Martin Müller 2 , Alexander von Müller 7 , Gerd Mutschke 5 , Tobias Naegler 1 , Dimitry Naumenko 2 , Eugene T. Ndoh 1 , Klarissa Niedermeier 4 , Fabian Nitschke 4 , Mathias Noe 4 , Urbain Nzotcha 2 , Sadeeb S. Ottenburger 4 , Ulrich W. Paetzold 4 , Joachim Pasel 2 , Sara Perez-Martin 4 , 伊恩·M·彼得斯 2 , 彼得普法伊弗 4 、诺亚·普弗格勒特 2 、菲利普·N·普莱索 4 、迈克尔·波兹尼克 4 , 安里克·普拉茨-萨尔瓦多 4 , 帕特里克·普鲁斯特 2 , 德克·拉德洛夫 4 , 乌韦·劳 2 , 德克·雷瑟 2 , 马塞尔·里施 6 , 马丁·罗布 1 , 克里斯汀·罗施 4 , 菲利普·罗斯 4 , 卢卡斯·罗斯 1 , 雷姆齐·坎·萨姆松 2 , 伊娃·席尔 4 ,安德里亚·施赖伯 2 , 马库斯·舒伯特 5 , 弗兰克·舒尔特 1 , 托尔斯滕·施瓦茨 1 , 哈瓦尔·沙蒙 2 , 梅塔尔·施维罗 2 , 谢尔盖·索尔达托夫 4 , 迪特·斯塔普夫 4 , 帕纳吉奥蒂斯·斯塔索普洛斯 1 , 桑德拉·斯坦克 6 , 沃尔克·施特尔泽 4 , 彼得·斯特默曼 4 , 菲利克斯斯图特 4 , 克洛伊·西拉尼杜2 , Muhammad Tayyab 2 , André Thess 1 , Stefanie Troy 2 , Julia Ulrich 4 , Annelies Vandersickel 1 , Robert Vaßen 2 , Martin Vehse 1 , Stefan Vögele 2 , Thomas Vogt 1 , Simon Waczowicz 4 , André Weber 4 , Tom Weier 5 , Marcel Weil 4 , 阿方斯·魏森伯格 4 , 托马斯·韦策尔 4 , 凯·维格哈特 1 , 克里斯蒂娜·伍尔夫 2 , 安德烈·霍内克斯 2 , 佩特拉·扎普 2 , 马可·佐贝尔 1 , 斯特凡·祖夫特 1
摘要:磁传感器元件的准确测量一直是磁场应用中的重要问题,但传感器系统中存在不可避免的误差,在使用前需要进行校正。常见的标量校正方法难以对传感器元件进行有效校正,因为它需要均匀稳定的背景磁场,并且依赖于磁场模量。因此,设计了一套可用于传感器矢量校正的三轴亥姆霍兹线圈,以产生受控的标准磁场。分析了线圈的设计指标、均匀区大小以及磁场与电流的关系,为传感器元件的有效校准提供依据。测量结果表明,本文设计的线圈的均匀区大小和磁场精度满足设计要求。同时,利用该线圈进行传感器阵列标定和磁目标定位,使传感器误差降低了3个数量级,磁目标定位精度达到0.1m,实用效果良好。
描述 876XA... 型是一种 IEPE(集成电子压电)三轴加速度计,专为高温应用而设计。876XA... 型加速度计使用 Kistler 的 PiezoStar 剪切元件设计,可提供宽工作频率范围和极低的温度变化灵敏度(请参阅第 3 页的灵敏度偏差图)。IEPE 传感器结合了 Pi- ezoStar 晶体和高增益积分混合微电子元件,与其他传感元件设计相比,可在整个工作温度范围内实现非常低的灵敏度变化。Kistler 剪切元件技术还可确保高度的抗基础应变误差能力。加速度计使用焊接钛结构以实现低质量和行业标准 4 针连接器,以及微型 4 针连接器以实现更轻的质量和更宽的频率操作。一体式硅胶电缆选项可用于高达 16 bar 的防水振动测试。所有变化均提供可靠的测量和长期稳定性,特别是在较高的工作温度下。
摘要 — 在本文中,我们开发了计算模型来分析集成磁集中器 (IMC) 对周围外部磁场的磁集中效应。我们提出了一种基于 IMC 的三轴霍尔传感器模型,该模型可以测量随机外部磁场的倾斜角度和绝对强度。IMC 将周围的平行磁性元件更改为垂直元件,因此允许水平霍尔板测量平行外部磁场的强度和倾斜角度。我们在 COMSOL Multiphysics 中为三轴霍尔传感器开发了一个基于有限元法 (FEM) 的模型。使用开发的模型研究和讨论了影响 IMC 磁集中效应的关键因素,包括材料特性和传感器结构。与传统的基于 IMC 的三轴角度传感器相比,传感器中不再需要参考永磁体。对于外部磁场的 α 和 θ 角,测量精度分别达到 0.8 度和 1.2 度。
M Naresh Kumar 博士 人力资源开发计划规划和评估组组长 国家遥感中心 海得拉巴,特伦甘纳邦 - 500037 印度政府太空部印度空间研究组织 tot@nrsc.gov.in
收稿日期: 2024–05–13 ; 修回日期: 2024–06–28 ; 录用日期: 2024–07–05 ; 网络首发时间: 2024–07–19 15:22:18 网络首发地址: https://doi.org/10.13801/j.cnki.fhclxb.20240718.003 基金项目: 国家自然科学基金 (51902125) ; 吉林市科技发展计划资助项目 (20210103092) ; 第七批吉林省青年科技人才托举工程 (QT202316) National Natural Science Foundation of China (51902125); Science and Technology Development Plan of Jilin City (20210103092); Seventh Batch of Jilin Province Young Science and Technology Talents Promotion Project (QT202316) 通信作者: 陈杰 , 博士 , 副教授 , 硕士生导师 , 研究方向为碳纤维复合材料的开发与应用 E-mail: jiechendr@163.com
表 1.设备摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 表 2.引脚描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 表 3.过滤值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 表 4.机械特性 @ Vdd = 3.0 V, T = 25 °C 除非另有说明。.........8 表 5。电气特性 @ Vdd =3.0 V, T=25 °C 除非另有说明。.............9 表 6.温度。传感器特性 @ Vdd =3.0 V, T=25 °C 除非另有说明 ........9 表 7.SPI 从属时序值。..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.10 表 8.I2C 从属时序值(TBC) ....................。。。。。。。。。。。。。。。。。。。。。。。。.11 表 9.绝对最大额定值 ...................。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 表10.串行接口引脚说明 ..........< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 表 11.I2C 术语。...< div> 。。。。。。。。。。。。。。。 < /div>.....。。。。。。。。。。。。。。。。。。。。。。。。...... div>......18 表 12.SAD+读写模式。...< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.19 表 13.主机向从机写入一个字节时的传输 ...............................19 表 14.主机向从机写入多个字节时的传输 ..........................20 表 15.当主机从从机接收(读取)一个字节数据时进行传输 ..............20 表 16.主机从从机接收(读取)多个字节数据时的传输 ........20 表 17.文档修订历史 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26
三阴性乳腺癌(TNBC)是乳腺癌最具侵略性的亚型,由于缺乏雌激素受体(ER),孕酮受体(PR)和人类表皮生长因子受体2(HER2)的表达,治疗方案相对有限,预后不良。肿瘤免疫微环境(时间)在三阴性乳腺癌的发生,发育,侵袭和转移中起关键作用,并且对患者的预后有重要影响。免疫疗法是三阴性乳腺癌的主要治疗方法之一。针对肿瘤免疫微环境的免疫疗法为治疗三阴性乳腺癌提供了新的方向。本文回顾了三重阴性乳腺癌的免疫微环境和免疫疗法进展的特征。