特别是,最近使用两种理论方法研究了N 2 + O(3 P)系统中的非弹性散射。首先,一种无限级突然(iOS)方法,21,22是一种近似量子方法,用于描述早期实验工作中观察到的散射横截面的振荡。9接下来,量子经典计费理论,其中仅通过量子力学描述了振动运动,而旋转和翻译的自由度则经过经典处理,23,24用于确定振动激发n 2(v = 1)的震荡速率(v = 1)碰撞到地面振动状态,与O(3 p)相撞。这个过程在上层大气中很重要,在上层大气中,原子氧代表了分子氮之后的第二个主要物种,因此在能量传递过程中起着关键作用(例如,在航天器或超音速飞机表面附近的高温冲击波中)。25–27
这种空间辐射 - 传感器技术提供了弹性的检测和表征太空天气危害,例如太阳耀斑。到达数据应用于分析电流和预测的太空天气现象,并确定带电颗粒在上层大气化学中的作用以及Van Allen辐射带的动力学。数据的应用包括监视高纬度的飞机的辐射环境以及地球轨道中的船员任务。
太阳在爆炸性太阳活动中释放了大量能量,例如太阳耀斑和冠状质量弹出(Webb和Howard,2012; Aschwanden等,2017; Benz,2017)。太阳能电晕可以加热到数百万度,大量带电的颗粒几乎可以加速到光速(Desai和Giacalone,2016年; Reames,2017)。加热的等离子体和高能量颗粒会在整个电磁频谱中增加太阳辐射,从无线电到伽马射线波长,这可能会在大约8分钟后立即对地球上层大气产生深远的影响。这些在地球上层大气中产生了额外的电离和加热,导致无线电停电,GNSS信号干扰和跟踪损失,航天器上的阻力增加,影响全球电路(GEC)以及许多其他现象(Botermer和Daglis,2007年; Buzulukova和buzulukova; Buzulukova and tsurutani; buzulukova and tsurutani; tsurutani; tasurutani; tacz22222;最近的研究表明,太阳耀斑效应可以通过电动力耦合扩展到地球的磁层(Liu等,2021; Liu等,2024)。当高能颗粒通过星际介质传播并到达地球附近(称为太阳能粒子(SEP)事件)时,它们可以对太空中的宇航员和航天器电子构成危险的辐射威胁(Vainio等人(Vainio等人,2009年,2009年; Shea and Smart,2012年)。该研究主题旨在在太阳及其地理上的后果上收集有关高能过程的科学贡献。本电子书中包含了八篇研究文章和一项综述,重点是太阳耀斑的多波长观察,加速度和能量颗粒的运输以及太阳喷发对耦合的磁层 - 离子层 - 热层 - 热层系统的影响。
太阳能工程设计(也称为太阳辐射管理,太阳辐射修改或太阳气候干预)是一组提议的技术,可减少地球接收到的太阳能的数量,以部分抵消全球变暖和气候变化。太阳能工程设计的主要建议是平流层喷射(SAI),它将涉及将气溶胶分散在上层大气中,以反映出一小部分不断进的阳光回到空间和较低的全球温度。海洋云亮(MCB)是通过喷洒海盐,也可以反射阳光并降低温度来使海洋云的研究较少。在这两种情况下,由于引入的颗粒最终将从大气中脱落,因此需要连续补充它们。此分析集中在SAI上,除非另有说明,否则“太阳能工程”和“ SAI”术语可互换使用。
大多数探测天空的激光都是不可见的,但一项帮助保护太空环境的新任务需要使用明亮的黄色激光。这种特殊的颜色需要刺激地球上层大气窄带中的钠原子像一颗明亮的星星一样发光。这颗人造“导星”发出的黄光用于测量往返太空的光的大气扭曲。一旦测量完毕,这种扭曲就可以用来预扭曲第二束激光,这样大气就会充当校正透镜,将激光束恢复到理想的光学特性。这使得第二束激光能够传播到太空中,而不会因大气的影响而降低其强度或功能,从而允许从地面主动移动太空垃圾。该技术现在有助于使用更快、更强大的二次激光器来移动太空垃圾,包括全球太空垃圾问题最严重的近地轨道。
在2011年,国际能源局表示:“经济实惠,无穷无尽和清洁的太阳能技术的发展将具有巨大的长期收益。它将通过依赖土著,不取之不尽且主要独立于进口的资源来提高国家能源安全,增强可持续性,降低污染,降低减轻全球变暖的成本,并使化石燃料价格低于其他方式。这些优势是全球性的。因此,应将早期部署激励措施的额外费用视为学习投资;他们必须明智地花费并需要广泛分享”。地球在上层大气中接收174,000吨(TW)的传入太阳辐射(绝缘)。大约30%反映回太空,而其余的则被云,海洋和土地吸收。地球表面的太阳光的光谱主要散布在可见的和近红外范围内,近紫外线中有一小部分。世界上大多数人口都生活在每天150-300瓦/平方米的隔热水平或每天3.5-7.0 kWh/m²的区域。
摘要,由于大气逃离了数十亿年的空间,火星的大气相对于地球的沉重同位素富集。估计这种富集需要对所有大气过程有严格的理解,这些过程有助于逃避过程的下层大气和上层大气之间的同位素比的演变。我们结合了通过大气化学套件在车载上获得的CO垂直谱的测量值,Exomar痕量气臂上的预测和光化学模型的预测,找到了光化学诱导的分馏过程的证据,从而消耗了CO和O的重量(Δ13C = -160 C = -160±90±90±)和±90±)。在上层大气中,考虑到这一过程的逃脱分级因子降低了约25%,这表明C从火星的大气中逃脱了比以前想象的要少。在下部大气中,将这种13个耗尽的CO分馏掺入表面可以支持最近发现的火星有机物的非生物起源。1。主文本1.1简介的地貌和矿物学证据线条表明,液态水曾经在火星的表面1,2上很丰富,但是目前尚不清楚我们今天观察到的是什么气候条件,或者是什么使气候促进了气候过渡到气候过渡到干燥,低压大气的原因。在诸如N和H等几种物种的沉重同位素中富集表明,大气逃生是整个历史上大气的气候和大气组成的重要机制3,4。将测得的大气同位素比与进化模型相结合,可以估计火星早期大气中物种的丰度,这证明了对大气同位素组成5-7的透彻理解的价值。对大气从同位素组成的长期演变的准确估计取决于两个重要数量:过去和现在同位素比的测量以及净逃逸分级因子,这决定了重型 - 同位素富集的效率,这是大气逃避到空间的效率8,9。好奇心流动站对C和O大气中C和O的同位素组成的最准确测量是由好奇心漫游者制作的,这表明CO 2在CO 2中的重量同位素在类似地球的标准中(13 C/ 12 C = 1.046±0.004 VPDB和18 O/ 16 O = 1.046 O/ 16 O = 1.048 o/ 16 O = 1.048±0.0055
在地球低沉的大气中,飓风的大小巨大,螺旋风和巨大的雨水/降雨/降水,这是破坏性的。但是,在地球上层大气中尚未发现类似于赫里斯的干扰。在这里,我们报告了低太阳能和其他低地磁活性期间极地电离层和磁层中的持久空间飓风。该飓风显示出较强的圆形水平等离子体流,带有剪切,几乎零流动中心以及由强烈的电子沉淀引起的,由与强烈的向上磁性电流相关的电流相关的强烈电子沉淀引起的。在中心附近,沉淀电子被基本上加速至约10 keV。尽管条件极为安静,但飓风将大量的能量和动量沉积赋予电离层。观察结果和模拟表明,在北向北向磁场的几个小时内,太空飓风是由稳定的高纬度瓣磁重新连接和电流连续性产生的,太阳磁场和太阳风密度和速度非常低。
摘要:热层是地球大气中最大的部分,并且由于它在如此高的高度(120-3000 km)的范围内,气态活性和分子数密度,每单位立方体的分子量,与大气层层相比,每单位立方体的分子数量,每单位单元的分子量变得难以测量和观察。为了解决此问题,我们可以咨询基本的化学动力学,以试图计算不同分子的稳态模型。气态颗粒在热层中的反应和相互作用都构成了一个系统,因此,简单模型的构建将有助于我们进一步研究和理解上层大气中发生的情况,使用我们已经知道的反应,并且可能揭示了我们不知道的某些气态行为。在我的项目中,我们特别希望构建一氧化氮数量密度填充物的稳态模型,因为它参与了许多光化学反应,从而导致其形成和变形。在动力学之外还需要咨询其他因素,在大气中进行了这种扩散的混合,但是可以使用为大气系统(称为Vulcan)构建的软件来咨询这些因素。我正在与詹姆斯·里昂(James Lyons)博士合作,以计算该模型并发展我对地球上层大气层的概念理解,并将该模型作为比较热层中一氧化氮浓度的比较的参考。