特变电工西安电气技术有限公司是特变电工集团的全资子公司,作为特变电工新能源设备供应商和服务商的主体,致力于光伏逆变器解决方案(全球累计安装超过64GW)、电池储能系统(安装超过4GWh)、微电网、静止无功补偿器(全球安装超过35GVar)、SCADA系统及TB-eCloud智能运维平台的研发、制造、销售与服务。
在介绍人工智能在创造力领域的新领域的文章中,人工智能被描述为对“创造力升级”的贡献,即“任何人都可以写出莎士比亚级别的作品,与巴赫一起谱曲,并以梵高的风格作画”[9]。世界经济论坛 [5] 等世界知名机构也发表了关于人工智能对创意产业影响的报告,详细说明了人工智能将如何慢慢完成日益复杂的创造性任务,而这些任务此前只能由人类完成。然而,这种说法具有误导性,因为它没有承认自动化技术发挥作用所需的人力。这些项目的驱动假设是,创造性知识可以被算法封装,并且通过使用正确的算法,艺术专业知识可以而且将自然而然地涌现。这种观点可以从 SonyCSL 的 FlowComposer 等项目中看出。该系统可以自动生成旋律,以“消除”音乐创作“耗时过程”带来的“障碍”,最终导致“新想法的涌现”[6]。因此,这些人工智能驱动的创意项目所宣传的叙事往往凸显了艺术媒介的技术奇迹(例如机器学习算法),而掩盖了制作、破解和调整算法以使其适用于定制艺术环境所需的劳动。实际上,人工智能艺术通常是构建和策划复杂相互作用的结果,不易分离成各个阶段或组成部分。在本文中,我们打算批判性地讨论随着艺术家将人工智能纳入他们的创作过程中,创意和艺术领域艺术创作叙事的转变。为此,我们报告了最近一项研究项目 [ 2 ] 的发现,该项目旨在更好地理解艺术家在所谓的 AI 艺术运动背景下对 AI 的实践。我们采访了五位艺术家,了解他们构思作品的方式、他们在创作艺术品中所扮演的角色,以及艺术品在他们艺术运动的社会文化结构中的接受程度。我们打算在这里报告有助于研讨会主题的选定发现。
我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,和 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还基于来自量子信息理论的谱信息散度提供了计算效率更高的松弛。对于上述所有任务,除了提出新的松弛之外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
摘要 我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,以及 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还提供了基于量子信息理论的谱信息散度的计算效率更高的松弛方法。对于上述所有任务,除了提出新的松弛方法外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
来源:2017 年 9 月 6 日 X9.3 太阳耀斑 地区:地球日 持续时间:几分钟 影响:具有 30 海里左右强 EUV 成分的太阳耀斑会严重影响用于航空、海上导航等的 GNSS 定位服务。所有可见的 GNSS 卫星系统都受到类似影响,包括 GPS、GLONASS 和伽利略。
我们提出了一种算法,该算法是基于变异量子假想时间探索的算法,用于求解由随机差异方程的多维系统产生的feynman-kac局部差异方程。为此,我们利用Feynman-KAC局部差异方程(PDE)与Wick-Rot的Schrödinger方程之间的对应关系。然后将通过变异量子算法获得的A(2 + 1)维feynman-KAC系统的结果与经典的ODE求解器和蒙特卡洛模拟进行比较。我们看到了经典的甲基动物与六个和八个量子的说明性示例之间的显着一致性。在PDE的非平凡情况下,它保留了概率分布 - 而不是保留ℓ2-norm - 我们引入了一个代理规范,该规范可以使解决方案在整个进化过程中近似归一化。研究了与该方法相关的算法复杂性和成本,特别是针对溶液的特性提取。还讨论了定量财务和其他类型的PDE领域的未来研究主题。
其中 σ x 、σ y 、σ z 是作用于自旋的泡利矩阵,g 是旋磁因子。(对于电子,g ≈ 2。)由于磁场 B 是规范不变的,因此方程 (15) 与方程 (14) 一样具有协变性。
量子数据的分类对于量子学习和近期量子技术至关重要。在本文中,我们提出了一个用于监督量子学习的新的混合量子古典框架,我们称之为变分阴影量子学习(VSQL)。我们在特定的方法中利用了量子数据的经典阴影,这些阴影可以根据某些物理可观察到的量子数据的侧面信息来表达量子数据。特别是,我们首先使用各种阴影量子电路以卷积方式提取classial特征,然后利用完全连接的神经网络来完成分类任务。我们表明,这种方法可以大大减少参数的数量,从而更好地促进量子电路训练。同时,由于在这样的阴影电路中使用了较少的量子门,因此噪音将更少。更重要的是,我们证明了贫瘠的高原问题,这是量子机器学习中一个显着的消失问题,可以在VSQL中避免。最后,我们通过数值实验对量子态的分类和识别多标记的手写数字的识别来证明VSQL在量子分类中的效率。尤其是,在手写数字识别的二进制案例中,我们的VSQL AP-在测试准确性中优于现有的变异量子分类器,并且值得注意的是,较少的参数所需的参数。