摘要 - 该论文研究了操作技术,以通过派遣网格形成(GFM)逆变器来实现无缝(平滑)微电网(MG)过渡。在传统方法中,GFM逆变器必须在mg过渡操作期间在网格之后(GFL)和GFM控制模式之间切换。今天的逆变器技术允许GFM逆变器始终以GFM控制模式运行,因此值得探索如何使用它们实现光滑的MG过渡操作。本文提出了三种操作技术:在GFL和GFM控制之间切换的传统方案;一个新的计划,以一致的GFM控制并在岛屿操作前转移下垂拦截;以及一致的GFM控制并在同步操作之前移动下垂截距的新方案。建立了完整的硬件设置,以比较三种技术并在现实世界应用程序中展示其实现。结果表明,第三种技术优于其他技术并表现出最佳的过渡性能,因为GFM逆变器在过渡操作过程中保持相同的操作点。因此,我们得出的结论是,在过渡操作期间,确保平滑的MG过渡操作要求GFM逆变器(s)保持相同的工作点(V,F,F,P,Q和相位角),此外还可以最大程度地减少常见耦合功率流的点。
交互式控制台提供以下功能:• 主机生成和控制控制台字母数字• 雷达系统状态、测试和校准• 将笛卡尔坐标中的输出数据平滑到二阶• 子系统维护诊断• 对安装异常进行补偿;非正交性、下垂、射频倾斜和失平• 角度伺服输入由主机开发或处理• 重新定位后系统重新配置和校准最少• 自动任务前设置和校准• 能够支持远程操作
Duro Loop 电缆吊索通过添加预环电缆端增强了 Dyna-Tite 悬挂系统。一旦将钢丝绳拉过锚点并穿过电缆的环端,它就已经在一端固定住了,从而节省了工地时间。剩余的钢丝绳“下垂”穿过 Dyna-Tite 电缆锁中的通道。然后,钢丝绳要么缠绕在管道上,要么穿过紧固点并回到同一电缆锁的第二个通道中。电缆锁内的锁定齿与钢丝绳啮合,从而将管道固定到位。
摘要 本文介绍了 BESS 运行对高压输电网的影响。本文主要考虑了有功功率与频率之间的关系问题。检查了 BESS 如何影响一次频率调节过程。对三种频率调节器进行了建模,它们是整个储能调节系统的一部分。实施了“下垂”型和 PI 调节器模型。此外,由于通过电力电子转换器连接到网络的电源份额增加,从而导致系统惯性减小,因此决定研究虚拟惯性对系统频率响应的影响。为此,对将虚拟惯性引入系统的 PWM 转换器控制系统进行了建模。
摘要:存储设备的控制在分布式交流微电网的稳定操作中起重要作用。提出了存储设备的多物镜分布二级控制方案。首先,为了维持频率和电压调节并确保比例的反应能力共享,采用了分布式共识方案,用于电池储能系统的运行。其次,为了延长电池的循环寿命,提出了一种改进的下垂控制策略与电荷平衡状态相结合,每个电池代理只需要与其在通信拓扑中的网络邻居共享信息。最后,建立了具有四个电池储能系统的岛AC微电网模型,模拟结果证明了提出的共识策略的有效性。
摘要:本研究提出了一种适用于消费者住宅区的混合交流/直流微电网,该微电网采用可再生能源,以满足需求。目前,发电和消费经历了重大转变。其中一个趋势是将微电网整合到配电网中,其特点是可再生能源资源的高渗透率以及并联运行。可以采用传统的下垂控制来获得混合交流/直流微电网并联逆变器之间准确的稳态平均有功功率分配。假设具有相同下垂增益的相同逆变器会有相似的瞬态平均功率响应,并且单元之间不会有环流。然而,瞬时功率可能会受到不同线路阻抗的很大影响,从而导致逆变器之间流动的环流功率发生变化,尤其是在负载变化等意外干扰期间。如果该功率被逆变器吸收,则可能导致直流母线电压突然升高并使逆变器跳闸,进而导致整个混合微电网的性能下降。当混合发电机充当单向电源时,问题将进一步恶化。在这项研究工作中,我们提出了一种适用于混合微电网的新型分布式协调控制,该系统可应用于包括可变负载和混合能源的并网模式和孤岛模式。此外,为了选择最有效的控制器方案,设计了参与因子分析以约束直流母线电压并降低循环功率。此外,对于光伏电站和风力涡轮机,都使用了最大功率点跟踪 (MPPT) 技术,以便在环境条件存在差异时从混合电力系统中提取最大功率。最后,通过模拟结果确认了引入的混合微电网策略在不同模式下的可行性和有效性。
摘要:本研究提出了一种适用于消费者住宅区的混合交流/直流微电网,该微电网采用可再生能源,以满足需求。目前,发电和消费经历了重大转变。其中一个趋势是将微电网整合到配电网中,其特点是可再生能源资源的高渗透率以及并联运行。可以采用传统的下垂控制,以便在混合交流/直流微电网的并联逆变器之间获得准确的稳态平均有功功率分配。假设具有相同下垂增益的相同逆变器会有相似的瞬态平均功率响应,并且单元之间不会有循环电流流动。然而,瞬时功率可能会受到不同线路阻抗的很大影响,从而导致逆变器之间流动的循环功率发生变化,尤其是在负载变化等意外干扰期间。如果逆变器吸收了这种功率,可能会导致直流链路电压突然升高并跳闸,进而导致整个混合微电网的性能下降。当混合发电机充当单向电源时,问题会进一步恶化。在本研究工作中,我们提出了一种适用于混合微电网的新型分布式协调控制,该控制可应用于包括可变负载和混合能源的并网和孤岛模式。此外,为了选择最有效的控制器方案,设计了参与因子分析来约束直流母线电压并降低循环功率。此外,对于光伏电站和风力涡轮机,当环境条件存在差异时,最大功率点跟踪 (MPPT) 技术已被用于从混合电力系统中提取最大功率。最后,通过仿真结果证实了引入的混合微电网策略在不同模式下的可行性和有效性。
检查飞行员说,根据无襟翼/无前缘缝翼进近的经验,他知道必须使用动力来控制飞机的下降。他使用副驾驶的空速指示器和视觉提示来确定飞行路径和改变动力的必要性。他认为,在进近的后期,飞机与跑道的对准度相当好,他们将到达跑道。此后不久,他观察到飞机位于预期着陆区域的左侧,并以高速率下降。他还观察到右翼开始下垂。他继续操纵 1 号和 3 号发动机油门,直到飞机接触地面。他说,进近时没有使用稳定的动力,而且动力在不断变化。他认为他在接触地面之前增加了动力。
Rize 环形电缆通过添加预环形电缆端增强了 Kwik-Loc 悬挂系统。一旦将钢丝绳拉到锚点周围并穿过电缆的环形端,它就已经在一端固定了,从而节省了工作现场的时间。剩余的钢丝绳“下垂”穿过 Rize Kwik-Loc 中的通道。然后,钢丝绳要么缠绕在设备上,要么穿过紧固点并返回到同一电缆锁的第二个通道中。电缆锁内的锁齿与钢丝绳啮合,从而将设备固定到位。为确保最大安全性,请仅使用 RIZE ENTERPRISES 提供的钢丝绳与 RIZE 电缆锁配合使用。
Duro Loop 电缆吊索通过添加预环电缆端增强了 Dyna-Tite 悬挂系统。一旦将钢丝绳拉到锚点周围并穿过电缆的环端,它就已经在一端固定了,从而节省了工地时间。剩余的钢丝绳“下垂”穿过 Dyna-Tite 电缆锁中的通道。然后,钢丝绳要么缠绕在管道上,要么穿过紧固点并返回到同一电缆锁的第二个通道中。电缆锁内的锁齿与钢丝绳啮合,从而将管道固定到位。为确保最大安全性,在所有电缆锁应用中仅使用 Duro Dyne 提供的环状钢丝绳。