摘要:近年来,电池能量存储(BES)在微电网系统中引起了很多关注。这是因为BES能够在需要时存储多余的功率并发电。在岛的微电网系统中,BES开始被视为可以调节系统频率的单位。BES中使用的控件显示频率调节性能称为负载频率控制(LFC)。但是,这种参与导致电池的大尺寸和高扩展计划成本。在本文中,提出了与传统LFC相比具有频率限制的高级LFC控制。所提出的控制意味着下垂控制作为基础,并具有频率限制。与传统的LFC相比,拟议的控制可以降低系统扩展计划成本。进行了性能模拟以验证电池性能。数值模拟的结果表明,所提出的对照参与降低操作成本。直接导致扩展计划成本降低。进行了一项针对电池选择的研究,以绘制BES大小解决方案的实用性。
6.背景:ERCOT 互连最初被免除了 BAL-001 R2(控制性能标准 CPS2)。在 FERC 命令 693 中,NERC 被指示制定区域标准,作为确保 ERCOT 互连中频率性能的替代方法。NERC 被明确指示纳入现有协议第 8.5 节的关键要素。这要求州长投入服务并以非静音响应执行,以确保互连对频率可测事件 (FME)(从 t(0) 开始)的最小频率响应。本区域标准提供了与识别频率可测量事件、计算区域内每种资源的主频率响应、计算互连最小频率响应和监控互连的实际频率响应、设置调速器死区和下垂参数以及提供主频率响应性能要求相关的要求。根据本标准,计算了两个主频率响应 (PFR) 性能指标:“初始”和“持续”。初始 PFR 性能 (R9) 测量 20 至 52 期间的实际响应与预期响应的比较
APFICQor 隔离功率因数校正模块是一种高效、高功率 AC-DC 转换器。它通过通用 AC 输入产生隔离 DC 输出电压。提供稳压和半稳压(下垂版本)模块。如图 A 所示,典型的电源由 SynQor AeroQor AC 线路滤波器、SynQor APFICQor 模块和储能保持电容器组成。需要保险丝来满足监管安全要求。APFICQor 的主要目的之一是将从单相正弦 AC 源吸取的输入电流整形为近乎完美的正弦波形,以便 AC-DC 电源将为该源提供非常高的功率因数负载。在进行波形整形时,APFICQor 可确保交流电流波形的谐波分量低于测试标准所要求的水平。交流电流波形的总谐波失真在满载时通常小于 3%。APFICQor 首先通过以下方式完成波形整形任务
随着BESS规模的进一步扩大,分布式发电机(DG)之间会存在区域差异。此外,集中控制的通信网络复杂且成本高。这些限制制约了集中控制的发展。研究人员正在研究分散方法,以实现本地化控制并减少通信负担。何等[9]提出了逆功率因数控制,可以实现同步和功率共享。孙等[10]分析了功率传输特性,提出了一种fP/Q控制,可更广泛地应用于电阻-电容(RC)负载。针对并网模式,提出了一种完全分散的控制方法[11],该方法使用下垂方案控制来实现模块间的同步。然而,这些分散方法没有考虑到特性和功能,例如提供惯性控制以实现友好的电网连接并实现每个电池模块中的SOC平衡。为了实现这些目标,许多研究人员一直专注于电池特性及其在电网或可再生能源系统中的功能。
• 它具有高弹性模量和高抗拉强度,因此具有极强的耐磨、耐磨损和耐冲击性。 • 由于其高介电常数,它是极好的电绝缘体。 • 由于蓝宝石的热稳定性,当暴露于从低温到 2000C 以上的温度时,它不会失去任何机械和光学属性。 • 导热性大于其他光学材料和大多数电介质。 • 由于极端热循环,不会造成表面损坏或失透。 • 与其他光学材料不同,它在极高的温度下不会下垂或塌陷。 • 它具有很强的耐腐蚀性,并且比大多数其他光学和非光学硬质材料更耐腐蚀性化学品。 • 在高辐射系统中不会发生日晒。 • 卓越的光学传输范围从紫外线到中红外线。(见图 2)蓝宝石具有六边形/菱形结构,并且具有取决于晶体方向的属性(图 1)。蓝宝石衬底有 C、R、A 和 M 平面以及随机取向。随机取向最便宜,通常用于非关键光学或机械应用。
Cat ® 双向电源 (BDP) 逆变器 Cat BDP 逆变器是储能系统的核心。基于为 Cat 电力驱动机器开发的技术,Cat BDP 提供卓越的可靠性、耐用性和功能,包括:• 用于储能设备充电和放电的智能控制。• 每单位 2 个故障电流能力 • 静态无功补偿器 • 四象限输出功率工厂控制 • 获得专利的非线性下垂控制,可实现超快速响应 • 无缝模式转换 • 自动防孤岛 • 电网形成 • 电网跟踪 • 自主模式或远程控制模式 • 并联就绪 - 可以并联使用多个模块以将总输出增加到 100+MW 储能 • 先进的锂离子电池提供良好的能量密度、高放电/充电效率和高循环寿命。• 重型电池结构可在运输过程中提供隔振。应用 • 电网加固/电网稳定 • 发电机组瞬态辅助 • 黑启动能力/装置功率 • 备用功率容量
“使用Yolo算法的驱动嗜睡检测系统”是一种创新的安全解决方案,旨在监视驱动程序,以实现疲劳的迹象。通过利用Yolo(您只看一次)算法(一种以其对象检测的速度和准确性而闻名的深度学习模型),该系统可以分析视频框架以检测嗜睡的迹象,从而防止驾驶员疲劳引起的事故。该系统依赖于车辆中安装的相机来捕获驾驶员的实时视频,然后由Yolo模型处理,以识别嗜睡的关键指标,例如眼球状态(闭合或闭合),面部运动(眨眼或打扰)以及头部位置(倾斜或下垂)。这些指标至关重要,因为它们可以提供早期信号,表明驾驶员可能正在疲劳。如果检测到长时间的嗜睡指标,系统会激活警报机制以通知驾驶员,该机制可能采取声音警报,视觉警告,甚至触觉反馈(如座椅振动)的形式。
摘要:使用计算机模拟研究了 4 层和 8 层带深柱的钢特殊弯矩框架 (SMF) 的抗震倒塌行为。所使用的模型能够模拟局部和整体不稳定性,并明确表示侧移和垂直倒塌行为。研究了影响框架倒塌潜力的三个关键因素:(1) 柱侧向支撑;(2) 柱重力荷载水平;(3) 柱截面特性。结果表明,即使满足当前的抗震规定,深柱也会遭受早期整体不稳定,导致在相对较低的位移水平下垂直系统倒塌。研究结果表明,可以通过限制外柱的轴向荷载水平、仔细选择构件尺寸以限制柱的深度厚度和整体细长度以及提供足够的侧向支撑来改善弯矩框架的性能。有人认为,柱缩短本身是一种良性效应,不会影响适用性或导致设计良好的框架倒塌。 DOI:10.1061/(ASCE)ST.1943-541X.0002150。© 2018 美国土木工程师学会。
摘要 - 在本文中,提出了基于工业直流电流(DC)微电网内基于电荷的特征图控制概念(ESS)。输入是ESS的SOC和DC微电网的末端电压。输出是转换器的电荷和放电电流,该转换器将ESS与直流微电网连接起来。适当的特征图设计概念,以实现在DC微电网内变化条件下反应的灵活控制。由于网格参与者数量变化或通过光伏(PV)系统的额外进料,这些可能是暂时的过载。特征图设计概念甚至适用于不深刻了解直流微电网的负载。根据来自机器人细胞的负载填充物的模拟分析和评估了该概念。结果表明,SOC取决于直流微电网的当前载荷。如果负载返回到平均值,则ESS的SOC倾向于名义SOC,该SOC由网格操作员预先确定。此外,如果适当设计了特征图,它可以保护ESS免受过度充电或深层排放。索引术语 - DC微电网,工业生产,储能系统,下垂曲线控制,特征图
混合储能系统 (HESS) 由两种或两种以上类型的储能组件以及连接它们的电力电子电路组成。因此,该系统的实时容量高度依赖于系统状态,不能简单地用传统的电池模型来评估。为了应对这一挑战,本文提出了一种等效充电状态 (ESOC),它反映了特定运行模式下 HESS 单元的剩余容量。此外,所提出的 ESOC 还应用于分布式 HESS 的控制,该 HESS 包含多个具有自己本地目标的单元。为了在这些单元之间最佳地分配总功率目标,提出了一种基于稀疏通信网络的分层控制框架。该框架从功率输出能力和 ESOC 平衡两个方面考虑了 HESS 中的分布式控制和最佳功率分配。基于一次下垂控制,根据每个单元的最大输出容量分配总功率,并使用二次控制从 ESOC 平衡的角度调整功率。因此可以控制每个储能单元来满足微电网局部的功率需求,基于MATLAB/Simulink的仿真结果验证了所提等效SOC应用的有效性。