摘要 - 将人工智能(AI)的快速整合到诸如医疗保健,金融和刑事司法等关键领域已引起了重大的道德问题,尤其是围绕机器学习模型中的偏见和公平性。尽管它们有可能改善决策过程,但这些模型仍可以使现有的社会偏见永存甚至加剧。本研究旨在调查AI系统中缓解偏置的方法,重点是平衡公平和性能。对2018年至2023年之间发表的150篇研究文章进行了系统评价,并在25个基准数据集上进行了实验,以评估各种机器学习算法和缓解偏差的技术。结果表明,在模型培训期间,偏差降低了23%,九个公平度指标的平均提高了17%,尽管总体准确性最高为9%。该研究强调了公平与绩效之间的权衡,这表明创建既公平又有效的AI系统仍然是一个持续的挑战。这些发现强调了对解决偏差的自适应框架的需求,而不会显着损害模型性能。未来的研究应探讨特定于领域的适应和可扩展的解决方案,以在整个AI开发过程中整合公平性,以确保更公平的结果。
建议:介绍GSCOP+以包括大量年营业额的所有上游和中游链企业,以确保全面的承保范围和公平性。在GCA内建立副裁决,其GSCOP+代码是为供应链中的商业企业关系而设计的,最终最终提供了14个最大的零售商。这可以使用政府已经根据《 GCA法案》(2013年)拥有的权力来完成,这是一种类似于欧盟不公平交易实践指令的方法,以制定相对于较弱的业务,需要更强大的业务。应扩大和加强GCA的汇款,以包括超过500,000英镑的营业额,其中GCA的黄金规则合法地纳入了GCA。,它还应该采用更基于威慑的,而不是遵守(“协作”)方向性的方法来实现执法,以减少无与伦比的强迫性。这可能涉及更多使用其现有的罚款和调查权。
本文旨在通过在整个研究周期中促进多样性,公平性和包容性(DE&I)原则来增强心血管(CV)研究人员的能力。它定义了DE&I,并引入了CV研究中招聘,保留和团队动态实施的实用策略。在每个研究阶段概述了支持代表性不足的人群参与的基于证据的方法。强调了包容性研究环境的重要意义,该论文提供了指导和资源。我们邀请简历研究人员积极采用DE&I原则,增强研究相关性并解决长期存在的简历健康差异。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
机器学习技术越来越多地用于高风险决策,例如大学录取,贷款归因或累犯预测。因此,至关重要的是,确保人类用户可以审核或理解所学的模型,不要创建或再现歧视或偏见,并且不会泄露有关其培训数据的敏感信息。的确,可解释性,公平性和隐私是负责任的机器学习开发的关键要求,在过去的十年中,这三者进行了广泛的研究。但是,它们主要被孤立地考虑,而在实践中,它们相互相互作用,无论是积极还是负面的。在本次调查文件中,我们回顾了有关这三个Desiderata之间相互作用的文献。更确切地说,对于每种成对相互作用,我们总结了认同的协同作用和紧张局势。这些发现突出了几种基本的理论和经验性冲突,同时还指出,当一个人旨在保留高水平时,共同考虑这些不同的要求是具有挑战性的。为了解决这个问题,我们还讨论了可能的调解机制,表明仔细的设计可以成功处理实践中这些不同的问题。
信用风险评估已成为现代金融领域关于明智贷款决策的主要关注点之一。尽管一些研究使用了传统的逻辑回归和线性判别分析技术,但在当今复杂且数据丰富的环境中,这些技术已越来越不适用。此类模型通常难以处理大型数据集和非线性关系,从而降低了其预测能力和适应性。人工智能 (AI) 和机器学习 (ML) 为信用风险建模提供了两种最具创新性的方法。本文回顾了一些用于提高信用风险评估准确性和效率的 ML 模型,从随机森林和支持向量机到神经网络。与更传统的模型相比,人工智能模型可以通过使用大量结构化和非结构化信息(包括社交媒体活动和交易历史等替代信息源)来提高预测准确性。然而,尽管具有明显的优势,但在信用风险评估中使用人工智能仍面临一些挑战,包括模型不透明、偏见和法规遵从性。这种“黑匣子”的性质,尤其是对于深度学习算法而言,会限制其可解释性,并使监管合规性和决策合理化变得复杂。为了解决这种“黑匣子”性质引起的问题,已经实施了可解释的人工智能技术,即 Shapley 值和 LIME,以提高模型的透明度,并提高利益相关者对决策支持系统的信任。本评论旨在评估人工智能和机器学习在信用风险评估中的当前应用,权衡各种模型的优势和局限性,并讨论信贷机构采用这些模型时所涉及的道德考虑和监管挑战。
陆军将建立 DEIA 成熟度模型(图 12),通过分析数据来注释 DEIA 融入陆军文化的现状。该成熟度模型允许组织无缝过渡到整体 DEIA 战略阶段。陆军文化转型是 DEIA 战略中独特的“随时间推移的风险”组成部分,因为高层领导和新兵之间的代沟不断产生不断变化的障碍,阻碍着创造多元化和包容性的环境。陆军的 DEIA 战略计划和成熟度模型认识到了这种代沟,建立了持续评估系统。它评估组织和领导者,以确保未来陆军文化中个人和单位的凝聚力。图 12 代表了陆军成熟度模型的四个阶段:
。CC-BY 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
摘要:我们目睹了这样一个时代,即使是那些从国际概念、规范和价值观中引入、发展并不同程度地受益于霸权的国家和机构,也不遵守或维护这些所谓的国际规范或价值观。例如,一个根据联合国规范建立和认可的国家可能会对平民和联合国维和特派团采取敌对行动,但联合国国家对此的抗议却微弱无力。我们地区社会对充满双重标准的所谓国际司法体系的不可信性、伊拉克和阿富汗等不义入侵的灾难性后果以及破坏性的全球伊斯兰恐惧症的正常化有着深刻的记忆,这说明有必要记住并将地区规范和价值观放在首位。关于公平与欧洲价值观相符:人工智能监管的跨学科视角或去殖民化人工智能协调:开放性、Vis ́ esa -Dharma 和包括被排除的知识等主题的研究工作产生了寻找人工智能 (AI) 与土耳其和伊斯兰价值观协调的动机。这项研究工作的驱动力是,所有算法决策系统都在某种程度上包含偏见,非西方世界需要构建自己的基于价值观的技术和社会学发展模式,因为对所谓的国际正义或所谓的民主价值观没有多少信心。这项研究包括对大数据、算法和人工智能基础知识的简要信息的检查。强调了厚数据和数字人类学的重要性。人工智能的误用和滥用已被确定为最重要的挑战之一。维果茨基关于社会学习、技术理论的社会建构和世界观理论的论点可能为构建一种可能按照土耳其和伊斯兰价值观发展的人工智能方法的理念提供了一些论据。我们还利用了去殖民化人工智能论证、人工智能方法的公平性以及安纳托利亚酵母世界观来支持我们的论证。最后,我们简要介绍了土耳其和伊斯兰价值观,但仅限于本研究的范围。
算法在不同的人口群体中可能表现不同。例如,如果一个心理健康工具主要基于来自白人中产阶级的数据进行训练,那么它可能无法准确诊断或治疗其他种族人群的疾病(Buolamwini 和 Gebru 2018)。偏见的另一个来源是人工智能工具的设计和开发过程。如果开发团队缺乏多样性或未能考虑不同人群的具体需求,那么最终的工具可能会无意中反映出其创造者的偏见。这可能导致工具对某些群体效率较低甚至有害,加剧心理健康护理中现有的差距(Gebru 等人 2020)。此外,算法本身也会带来偏见。例如,机器学习算法通常会优化准确性或效率而不考虑公平性。因此,它们可能会强化数据中现有的偏见,甚至通过其决策过程产生新的偏见(Hardt 等人 2016)。
本文旨在通过在整个研究周期中推广多样性、公平性和包容性 (DE&I) 原则来增强心血管 (CV) 研究人员的能力。它定义了 DE&I,并介绍了在 CV 研究中招聘、保留和团队动态方面实施的实用策略。概述了每个研究阶段支持代表性不足的人群参与的循证方法。本文强调了包容性研究环境的重要性,并提供了指导和资源。我们邀请 CV 研究人员积极接受 DE&I 原则,增强研究相关性并解决长期存在的 CV 健康差距。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -