哥德尔的两个不完备性定理中的第一个指出“任何一致的形式系统 F,只要其中可以执行一定数量的基本算术,都是不完备的”6。这意味着 F 中存在既不能证明也不能反驳的陈述(F 中的“哥德尔句”可以称为 GF)。每个系统都有自己的哥德尔句。虽然可以定义一个新的、“更具包容性”的系统 F',并由整个 F 以及之前的哥德尔句 GF 作为公理组成,但这不会产生一个现在完整的系统,因为该定理也适用于修改后的 F 版本,因此 F' 也不完整。因此,GF 将成为 F' 中的一个定理,这并不与哥德尔第一定理相矛盾,因为 GF 在 F 中无法证明,而不是在 F' 中。然而,由于第一定理适用于F',因此存在一个新的哥德尔句子GF',证明F'也是不完整的。
量子信息概念诞生于量子力学与信息论科学的交叉学科。前者的惊人成功使人们认为信息概念离不开量子形式主义的数学结构,而量子形式主义对物理定律的形式施加了根本性的约束。早在 20 世纪 30 年代,冯·诺依曼就将量子态的熵 [1] 定义为经典玻尔兹曼-吉布斯熵的类似物,后来发现后者是香农熵 [2] 的量子对应物——经典通信理论的基础概念。大约在同一时间,爱因斯坦·波多尔斯基和罗森指出了量子形式主义的不同寻常的特征,这似乎可以得出结论:量子力学是不完备的 [3]。1970 年,两位年轻物理学家——华盛顿州立大学物理系的帕克 [4] 和纽约哥伦比亚大学的威斯纳 [5] 分别独立分析了量子形式主义的物理含义。前者发现了复制量子信息的根本限制,而后者则发现了第一个
奇点在基础物理学的最佳理论中占有重要地位:量子场论(QFT)是粒子物理学标准模型的框架,描述了所有基本粒子和力,而广义相对论(GR)将引力描述为时空的曲率。这些奇点有多种类型,引发了人们对它们对这些理论的地位和未来理论发展所暗示的不同诊断。然而,至少其中一些被标准解释为促使人们寻找一种更基本的理论:量子引力(QG)。此外,这些奇点在广义相对论和量子场论中的出现通常被认为表明了量子引力的某些特征,这些特征将使非基础理论中的奇点不再成为问题;也就是说,人们期望新理论将解决或消除特定的奇点,并解释它们在当前理论中的出现。因此,奇点通常不仅被视为寻找新理论的动机,而且还为该理论的形式提供了宝贵的见解。鉴于缺乏可用于辅助其发展的经验动机、指导原则和约束,这一点对于寻找量子引力场至关重要。鉴于奇点的重要性和潜在价值,值得更彻底地研究奇点在广义相对论和量子场论中的意义,以了解它们对寻找量子引力场有何启示。特别有趣的是,对比这些理论对不同奇点的不同态度,并探究对量子引力场的推测含义是否有充分的动机。这是本文的目的。我们首先考虑广义相对论中的两种时空奇点:测地线不完备性(§2.1)和曲率奇点(§2.2)。关于广义相对论中这些奇点的意义,物理学界和哲学界的主流态度已经存在分歧。在物理学中,时空奇点通常被认为代表广义相对论的“崩溃”,因而指出需要量子广义相对论。我们在哲学中发现了相反的态度,因为一些著名文献试图明确广义相对论“崩溃”的意义,却找不到任何可以指责该理论不完备的答案。我们概述了一些论据,说明为什么每一种类型的奇点都可能被认为是有问题的,从而需要加以解决。特别是,§2.3 提出了一个论据,说明曲率奇点如何可能被认为是广义相对论“崩溃”的信号,我们认为这在哲学文献中一直被低估了。然后,我们考虑 QFT 中的两种奇点:紫外发散,通常被认为源于使用微扰理论(§3.1);以及朗道极点,紫外发散,通常被认为不是源于使用微扰理论(§3.2)。接下来(§3.3),我们考虑在量子场论的框架下以微扰方式处理广义相对论中的发散(即与爱因斯坦-希尔伯特作用的不可重正化相关的发散),以及渐近安全场景提出的潜在解决方案。在§3.4中,我们发现了对量子场论奇点的四种可能立场。这四种立场是当前理论中对奇点的四种更一般态度的案例。在§4中,我们概述了对奇点的四种态度,这主要基于对物理学文献的调查。虽然似乎普遍一致认为至少一些奇点必须或将会被重正化,但这并不意味着我们对奇点的态度是绝对的。