摘要:在增材制造(AM)中,技术和处理参数是确定给定材料样品特征的关键要素。为了区分这些变量的效果,我们使用了具有不同AM技术的相同AISI 316L不锈钢粉末。使用的技术是金属AM中最相关的技术,即具有高功率二极管激光器的直接激光沉积(DLD)和使用新颖的CO 2激光器,具有高功率二极管激光器和选择性激光熔点(SLM),这是一种尚未与此材料一起报道的新技术。所有样品的微观结构均显示出奥氏体和铁素体相,与两个SLM相比,它们对DLD技术更粗糙。纤维激光SLM样品的硬度最大,但其弯曲强度较低。在带有CO 2激光片的SLM中,孔隙率和缺乏熔化会减少断裂应变,但在某些堆积策略下,强度大于激光SLM样品中的强度。使用DLD制造的标本显示出比其余的更高的断裂应变,同时保持高强度值。在所有情况下,都观察到裂纹表面并确定断裂机制。使用归一化参数方法比较了处理条件,该方法也被用来解释观察到的微观结构。
材料挤压增材制造 (MEAM) 作为一种现代制造工艺,目前正在吸引各个行业的关注,因为它可以以比其他增材制造工艺更低的成本生产出复杂零件。在本研究中,比较了增材制造和锻造的 17-4PH 不锈钢零件在原始状态和在 H900 条件下热处理的微观结构和力学性能。原始试样由马氏体和 δ-铁素体组成。固溶处理后,δ-铁素体相在马氏体基体中表现出明显的生长。时效处理引起的沉淀强化表现为拉伸强度和硬度的增加。此外,从实验中获得的强度系数 (K) 和应变硬化指数 (n) 被用作拉伸试验模拟的输入数据。所有试样的模拟结果与实验结果一致。模拟结果的发现有望用于预测通过 MEAM 工艺制造的复杂零件的力学行为。关键词:增材制造,材料挤压增材制造,17-4PH不锈钢,热处理,沉淀强化,有限元方法1.引言
添加剂制造已从快速原型技术发展为一种能够生产具有高度复杂零件的机械性能,而机械性能超过了传统上实现的特性。 div>激光技术对金属粉末的加工允许处理多种合金甚至复合材料。 div>这项研究分析了通过选择性激光融合合并的316L不锈钢的牵引和压缩响应。 div>通过光学MI磨练分析了结果分钟。 div>关于机械性能,对蠕变的抗性,对牵引力的最终抵抗力,裂缝前经济百分比,对理解和微量残留性的抗性。 div>结果表明,微观结构是由堆叠的熔融微底裂组成的,在该微孔中,由于高热梯度和高固化速度,生成了细胞子图。 div>压缩抗性(1511.88±9.22 MPa)优于牵制性(634.80±11.62 MPa)。 div>这种差异主要与变形硬化和残余张力有关。 div>最初的微腐烂率为206.24±11.96 HV,在压缩测试后,硬度增加了23%。 div>
摘要:本研究调查了使用 CO₂ 激光焊接工艺生产的 AISI 304 钢焊缝的机械和微观结构行为。重点是了解不同焊接条件对 2 毫米厚钢板的影响。焊接在三种条件下进行:无根部开口的自热焊、使用填充金属的 1 毫米根部开口焊接以及使用填充金属但没有根部开口的焊接。使用扫描电子显微镜 (SEM)、显微硬度测试、单轴疲劳测试和随后的断口检查分析了接头。微观结构分析表明,在所有条件下,自热焊缝中存在大量孔隙,并且主要形成 delta 铁素体和板条状铁素体相。在机械性能方面,自热焊缝在母材中表现出断裂,而使用填充金属的焊缝在焊缝金属附近表现出断裂。尽管平均抗疲劳性存在明显差异,但自热焊缝和使用填充金属但没有根部开口的焊缝表现出更高的失效循环次数。关键词:激光焊接,不锈钢,微观组织,力学性能,疲劳 1. 引言
沿海核电站的服务水系统使用咸水和经常被污染的水,面临着业内最苛刻的服务环境之一。瑞典公用事业公司 OKG AKTIEBOLAG 在其位于瑞典菲格霍尔姆的奥斯卡港核电站就拥有这种运行环境。服务水系统中使用的咸水和污染的波罗的海水导致原始系统材料大面积腐蚀。自 1978 年以来,材料更换、测试和评估一直在进行,使 OKG 拥有世界上任何核电站中最丰富的 6 Mo 奥氏体不锈钢、钛和其他高性能替代材料运行经验。本案例研究回顾了原始系统材料遇到的问题;替代材料评估程序;以及合金在服务中的实际性能;因此,为具有同样严苛运行环境的公用事业公司提供了宝贵的见解。
本研究介绍了一种估算奥氏体不锈钢 304、304L、316 和 316L 型裂纹扩展的方法,这些不锈钢通常用作核压力容器的结构材料。这些结构部件通常要经受中子辐照和组合载荷,包括启动和关闭引起的重复机械应力(即疲劳)以及高温下加载期间引起的蠕变。在本研究中,使用基于条带屈服的疲劳裂纹扩展模型估算疲劳裂纹长度。该模型扩展为包括存在保持时间时的蠕变变形的影响,并扩展为包括辐照的影响。与文献中可用的实验数据相比,可以对各种组合载荷条件下选定的材料获得合理的裂纹扩展估计值。
对可再生能源的日益重视导致氢和电池研究的研发工作激增。阳极析氧反应 (OER) 周围的密集电化学环境困扰着催化层、基底和多孔传输层的活性和稳定性,最终影响这两个行业。在此,我们报告了电位循环 (PC) 316L 不锈钢毡多孔传输层 (PTL) 用于阴离子交换膜水电解的好处。如 SEM、EDS、XPS、XRD 和拉曼光谱所示,PC 增加了表面粗糙度并通过铁的氧化产生了 CrFe 5 Ni 2 -O x H y 层。在三电极设置中进行的 PC 后测试显示极化电阻下降了约 68%,这反映在其用作阴离子交换膜水电解器 (AEMWE) 中的阳极时的性能上。总体而言,在阳极条件下对 PTL 进行电位循环在 AEMWE 中测试时可提高性能。可以考虑对不锈钢阳极实施这种处理,以提高 AEMWE 性能。
摘要:在激光粉末定向能量沉积 (LP-DED) 过程中,会发生许多复杂现象。这些现象与构建过程中使用的条件密切相关,会影响零件在微观结构特征和机械行为方面的质量。本文研究了构建参数对通过 LP-DED 生产的 AISI 316L 不锈钢样品的微观结构和拉伸性能的影响。首先,通过研究其形态和几何特征,从单扫描轨迹开始选择构建参数。接下来,对使用两组参数构建的 316L LP-DED 块体样品的孔隙率、几何精度、微观结构和机械性能进行了表征。使用 Voce 模型分析了拉伸试验数据,并发现了拉伸性能与位错自由程之间的相关性。总体而言,数据表明,孔隙率不应被视为 LP-DED 部件质量的唯一指标,还应进行机械表征。
由于焊接电流会影响电极烧尽速度、熔合深度和焊件几何形状,因此它是电弧焊工艺中最重要的变量。焊道形状、焊接速度和焊接效率都受电流影响。由于直流电极负极 (DCEN)(正极性)产生更好的效果,因此电极正极 (DCEP) 上的焊接穿透深度和行进速度更大,并且它用于大多数 GTAW 焊接(反极性)。反极性允许电极尖端快速升温并在气体钨中降解。因为阳极比阴极升温更快。气体钨电弧焊中的较高电流会导致飞溅和工件损坏。同样,在气体钨电弧焊中,较低的电流设置会导致填充焊丝粘住。为了沉积等量的填充物,必须长时间施加高温。因此,对于较低的焊接电流,通常会看到更大的热影响区域。在固定电流模式下调整电压以保持电弧电流稳定 [3,4]。与其他焊接工艺相比,我们通常通过钨极惰性气体焊接实现无缺陷接头。让您更好地控制焊接,从而实现更快、更高质量的焊接。另一方面,GTAW 比大多数其他焊接方法复杂得多,难以跟踪,而且速度要慢得多。填充金属通常被使用,但是一些焊接(称为自熔焊或组合焊)不需要它。这种方法提供了竞争方法,例如焊接技术包括屏蔽金属电弧焊和气体金属电弧焊。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。