主要因为其优异的耐腐蚀性能而广泛应用于工业领域[1–5]。304 不锈钢是一种奥氏体钢,广泛用于化工厂管道和许多其他可能承受循环载荷的应用。疲劳寿命和裂纹起始位置的预测是工厂结构设计的重要方面。疲劳失效通常是由小于晶粒尺寸的微裂纹的产生引起的,然后微缺陷生长并融合为主要裂纹,接着是主要宏观裂纹的稳定扩展,最后是结构不稳定或完全断裂[6]。奥氏体不锈钢因其优异的力学性能而被广泛用作反应堆冷却剂管道、阀体和容器内部构件的核结构材料[7]。
奥氏体不锈钢 (ASS) 常用于敏感的氢气 (H) 存储、氢气基础设施以及运输应用,因为与铁素体钢相比,它们通常不太容易受到氢脆 (HE) 的影响。这是因为它们的扩散率较低,而氢的溶解度较高 [1-3]。氢脆描述了这样一种现象:材料的机械性能经常会突然发生灾难性的恶化(特别是在受到拉伸载荷时,由于拉伸延展性的丧失),这是由于酸性溶液中的环境氢和含氢气体 [4-8] 扩散到块体材料中造成的。与不易发生 HE 的热力学稳定 ASS(如 AISI 310S 型)相比,在仅含 8 – 10 wt% Ni 的亚稳态 ASS(如 AISI 304 型)中经常观察到严重的 HE,其中在变形过程中会形成应变诱导的 α ′马氏体 [9 – 11]。应变诱导的 α ′马氏体为 H 提供了快速扩散路径,导致 H 在微观结构的关键位置富集(如异质界面前方的微观机械高应力区域),从而导致 H 辅助开裂 [12, 13]。此外,由于凝固过程中的偏析或高冷却速度导致 δ 到 γ 的转变不完全,亚稳态 ASS 中可能会出现少量的 δ 铁素体。这可能会通过提供裂纹起始点来增加样品的 HE 敏感性 [14, 15]。
摘要:本研究旨在评估由电弧添加剂制造(WAAM)工艺产生的添加性化奥氏体不锈钢的应力腐蚀行为。通过电化学分析在腐蚀性环境中,通过电化学分析和缓慢的应变速率测试(SSRT),通过电化学分析来研究这一点。使用光学和扫描电子显微镜以及X射线衍射分析进行了微观结构评估。所获得的结果表明,尽管添加性生产的奥氏体不锈钢及其对应物合金之间的微观结构和机械性能存在固有的差异,但它们的电化学性能和应力腐蚀性易感性相似。添加性合金中的腐蚀攻击主要集中在奥氏体基质与二级铁素体相之间的界面上。在与单个奥氏体相具有单个奥氏体相的对手锻造合金的情况下,腐蚀攻击是由均匀的斑点均匀散布在外表面的。两种合金在腐蚀性环境中SSRT实验中的“帽和锥体”骨折的形式显示出延性衰竭。
SS316L的定向能量沉积添加剂制造(DED-AM)使用原位和Operando Synchrotron X射线成像进行了研究,以定量地了解加工参数对融化池形态和表面质量的影响。发现,DED-AM构建的表面粗糙度可能是由于熔体流量的变化和构建阶段运动扰动引起的熔体池表面扰动所致。的过程图,该过程图将构建质量与处理参数(包括粉末进料速率,激光功率和遍历速度)相关联。AM过程参数如何控制构建效率,并确定导致粗糙度的表面扰动所需的处理条件。2020作者。由Elsevier B.V.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
本研究介绍了一种估算奥氏体不锈钢 304、304L、316 和 316L 型裂纹扩展的方法,这些不锈钢通常用作核压力容器的结构材料。这些结构部件通常要经受中子辐照和组合载荷,包括启动和关闭引起的重复机械应力(即疲劳)以及高温下加载期间引起的蠕变。在本研究中,使用基于条带屈服的疲劳裂纹扩展模型估算疲劳裂纹长度。该模型扩展为包括存在保持时间时的蠕变变形的影响,并扩展为包括辐照的影响。与文献中可用的实验数据相比,可以对各种组合载荷条件下选定的材料获得合理的裂纹扩展估计值。
互连是固体氧化物燃料电池(SOFC)的重要组成部分,在那里它们将单个细胞电气连接以形成燃料电池堆栈。它们是造成整体堆栈成本和燃料电池寿命有限的主要贡献者,因此,在互连水平上进行的改进可以进一步推动SOFC的商业化。互连的有限寿命与当今使用的材料,铁素体不锈钢(FSS)有关。fss互连比以前使用的陶瓷更具成本效率,但是它们在SOFC中普遍存在的条件下降解:高温在600°C和850°C之间,以及P(O 2)梯度。发生的某些腐蚀现象,例如CR蒸发和连续的氧化物量表生长,分别会对阴极中毒引起的细胞性能负面影响,分别增加了电阻。已经发现这些现象通过涂层(例如(CO,MN)3 O 4(MCO)涂层或反应性元素涂层(例如CE)来有效地减轻。本论文在三个方面审查了这些涂层:(i)半导体尖晶石涂层影响互连的电阻,或者与在其下方持续生长的Cr 2 O 3比例相比,其电导率可忽略不计; (ii)即使在中等温度下,即使在涂层中也破裂,即650°C和750°C,或者使裂缝持续存在并增加Cr蒸发; (iii)是最先进的CE/涂层(10 nm Ce/640 nm Co)的长期稳定性,是否在35 000小时后具有有效。第二个方面不仅要了解腐蚀行为很重要,而且还允许大规模卷到滚动的PVD涂层,这比批处理涂层更具成本效益。在这项工作范围内阐明的另一种腐蚀现象是双重大气效应。如果FSS暴露于双重气氛,即与FSS暴露于仅空气大气相比,一侧的空气和另一侧的氢。关于为什么提出双重气氛效应的新理论,并通过排除所有其他可能性而间接验证它。讨论了影响双重大气效应的因素,并显示了双重大气效应如何部分缓解。
描述:Nailor 92FFD-SS 系列风扇过滤器扩散器旨在为洁净室环境提供 HEPA/ULPA 过滤空气。该装置适用于洁净室应用,例如微电子、制药、生物技术以及航空航天制造/装配和激光/光学行业。所有 92FFD-SS 系列集气室均由机器人焊接的集气室和风扇/电机组件组成,以确保可重复、坚固、清洁且几乎无泄漏的设计,满足目前最严格的泄漏测试。ECM 技术提供超节能设计,能够精确设置恒定的风量。当过滤器负载增加风扇外部静压时,ECM 将进行补偿以保持设定的气流。过滤器固定在集气室内,靠在与过滤器凝胶通道接触的连续刀刃上,提供防漏密封。过滤器由穿孔面保护,可通过四分之一旋转紧固件从房间侧面拆卸。
摘要。使用中子衍射和轮廓方法的残留应力测量在由316升不锈钢粉制成的阀外壳上进行,并使用激光粉末床融合添加剂制造具有复杂的三维内部特征。测量结果捕获了残留应力场的演变,该状态是将阀外壳连接到底板上的状态,到达壳体从底板上切开的状态。利用此切割,因此使其在此应用中是非破坏性的测量,轮廓方法映射了整个切割平面上的残留应力分量正常的(通过切割完全缓解了这种应力场),以及由于切割而导致的整个壳体中所有应力的变化。中子衍射测量的无损性质启用了在切割前和切割后的构建点的各个点的残余应力测量。在两种测量技术之间观察到了良好的一致性,这两种测量技术表明,在外壳的外部区域中显示了较大的拉伸方向残余应力。轮廓结果表明,从两个不同区域中从底板上移除构建后,多个应力分量发生了很大变化:在平面附近,在该平面附近,从基本板中切开构建,并在充当应力集中器的内部特征附近。这些观察结果应有助于理解基本板附近构建破裂的驾驶机制,并确定对结构完整性的关注区域。中子衍射测量还用于显示基本板附近的剪切应力明显低于正常应力,这是对轮廓方法的重要假设,因为不对称切割。