增材制造 (AM) 工艺通过逐层沉积材料来构建机械零件 [1] 。在金属 AM 工艺中,粉末床熔合 (PBF) 的应用最为广泛 [2] 。PBF 方法使用激光或电子束将粉末床顶部的金属粉末层与下面的层熔合在一起。激光 PBF (LPBF) 的一个众所周知的应用是通用电气开发的尖端航空推进发动机内的燃油喷嘴,其中约 20 个零件的传统设计减少为单个 LPBF 构建 [3] 。虽然这些进步意义重大,但目前工业中的 LPBF 构建实践通常仅限于单一合金。相比之下,定向能量沉积工艺已用于制造金属复合材料,可用于生产需要多种材料的高度工程化机械零件 [4] 。 ODS 合金是一种金属基复合材料,其中纳米级氧化物可抑制高温下的晶粒生长,从而提供高温力学性能和高抗蠕变性[5]。ODS 铁素体合金作为耐辐射包层和结构材料的替代品,受到核工业的广泛关注。氧化物的小尺寸和高数密度导致了大量复合界面,这被认为可以消除点缺陷,防止缺陷在失效前聚集[6]。然而,由于颗粒的浮力,ODS 合金的铸造具有挑战性[7]。因此,传统的粉末冶金法用于生产 ODS
摘要:使用线材的直接能量沉积 (DED) 工艺被认为是一种可以以可承受的成本生产大型部件的增材制造技术。然而,DED 工艺的高沉积速率通常伴随着较差的表面质量和固有的打印缺陷。这些缺陷会对疲劳耐久性和抗腐蚀疲劳性产生不利影响。本研究的目的是评估相变和打印缺陷对通过线材激光增材制造 (WLAM) 工艺生产的 316L 不锈钢腐蚀疲劳行为的关键影响。为了进行比较,研究了具有规则奥氏体微观结构的标准 AISI 316L 不锈钢作为对应合金。使用 X 射线微断层扫描 (CT) 分析的三维无损方法对打印缺陷的结构评估。通过光学和扫描电子显微镜评估微观结构,而通过循环动电位极化 (CCP) 分析和浸没试验评估一般电化学特性和腐蚀性能。使用旋转疲劳装置检查了在空气和模拟腐蚀环境中的疲劳耐久性。得到的结果清楚地表明,与 AISI 同类合金相比,WLAM 工艺生产的 316L 合金的腐蚀疲劳耐久性较差。这主要与 WLAM 合金的缺点有关,即具有双相微观结构(奥氏体基体和二次 delta-铁素体相)、钝化性降低以及层内孔隙率显著增加,而层内孔隙率是疲劳裂纹的应力增强因素。
奥氏体不锈钢的低温渗碳/氮化 – 合金成分对微观结构和性能的影响 Giulio Maistro 工业与材料科学系 查尔姆斯理工大学 摘要 奥氏体不锈钢是食品、制药、化学、石油和天然气工业等重视耐腐蚀性的应用中最常用的材料之一。然而,低硬度和差的摩擦学性能往往是其应用的障碍。传统表面硬化技术,如高温渗碳(T > 850°C)和氮化(T > 550°C)不适用于这些合金。在这种情况下,富铬碳化物/氮化物在晶界处的快速沉淀会导致合金中的铬消耗并损害耐腐蚀性。自 80 年代中期以来,已经开发出用于奥氏体不锈钢表面硬化的低温热化学处理,包括气体渗碳和等离子氮化。这些过程可以诱导形成无沉淀间隙过饱和亚稳态扩展奥氏体(也称为 S 相),具有优异的硬度和改善的耐磨性,同时保持耐腐蚀性。
2,3-二氨基苯丙胺(DAP,98%)购自J&K Chemical Technology Co.,Ltd。(美国),并通过硅胶柱色谱图进一步纯化。通过Millipore系统纯化了所有实验中使用的水。氧化铝微孔膜购自香格技术。Co.,Ltd。(中国上海)。 使用了一个专门设计的系统,其中使用了衬有特氟龙的不锈钢高压灭菌器和聚(p-苯基)衬里(PPL衬里)不锈钢高压灭菌器。 Teflon和/或Poly PPL衬里的壁厚约为80毫米,而不锈钢壁约为100毫米。 特氟龙衬有的不锈钢高压灭菌器和PPL衬里不锈钢高压灭菌器的最高工作温度分别为300和350 O C。 用于高温反应(> 350°C)。Co.,Ltd。(中国上海)。使用了一个专门设计的系统,其中使用了衬有特氟龙的不锈钢高压灭菌器和聚(p-苯基)衬里(PPL衬里)不锈钢高压灭菌器。Teflon和/或Poly PPL衬里的壁厚约为80毫米,而不锈钢壁约为100毫米。特氟龙衬有的不锈钢高压灭菌器和PPL衬里不锈钢高压灭菌器的最高工作温度分别为300和350 O C。用于高温反应(> 350°C)。
已经进行了利用磷酸盐抑制剂控制不锈钢合金腐蚀速率的研究。腐蚀速率测量方法为恒电位极化法,试验金属为201、304不锈钢,腐蚀介质为3.5%NaCl。本研究的目的是确定磷酸盐控制测试金属腐蚀速率的最佳条件。本研究使用独立变量,即磷酸盐浓度(50、100、200、300、400、500 ppm)和工作电极(不锈钢 304 和不锈钢 201)。研究结果表明,对201不锈钢和304不锈钢的最佳缓蚀效率出现在100 ppm浓度下,分别为89.68%和94.03%,腐蚀速率分别降低0.022132 mpy和0.045694 mpy。
本研究旨在表征采用激光粉末定向能量沉积 (LP-DED) 和激光粉末床熔合 (L-PBF) 制造的 17-4 PH 不锈钢 (SS) 在非热处理和热处理条件下的微观结构和晶体织构。研究发现,非热处理的 LP-DED 17-4 PH SS 具有粗柱状铁素体晶粒,并以魏德曼铁素体晶粒为点缀,而 L-PBF 对应物具有非常细小且大多为等轴的铁素体晶粒以及板条马氏体。根据使用 Thermo-Calc 生成的相图,L-PBF 和 LP-DED 17-4 PH SS 样品获得了相同的应力释放 (SR) 温度。软件。CA-H1025 热处理之前的 SR 步骤导致织构弱化并略微细化了晶粒结构。未经热处理的L-PBF 17-4 PH SS样品具有强的立方体和γ纤维织构,而进行SR-CA-H1025热处理后织构转变为较弱的γ纤维组分。
这项工作着重于316升底物上的复合涂层(316升染色的钢)的有向能沉积的热建模。开发的有限元模型预测了沉积过程中包裹中部中间部分的热历史和熔体池维度的演变。nu-merical结果与实验分析(光学和扫描电子显微镜和热电偶记录)相关,以验证模型并讨论可能的固化机制。证明,在边界条件下强制对流的实施非常重要,以确保输入能量和热量损失之间的平衡。最高峰值温度显示了第一层的略有增加趋势,其次是明显的稳定,随着外壳高度的增加。通过边界证明了高热量损失。在文献中,大多数建模研究都集中在单层或几层几何上,但这项工作描述了一个多层模型,能够预测沉积过程中的热领域历史记录并提供有关新物料的一致数据。该模型可以应用于重新校准的其他形状。详细介绍了校准方法以及对输入参数的灵敏度分析。©2021作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:本研究旨在评估由电弧添加剂制造(WAAM)工艺产生的添加性化奥氏体不锈钢的应力腐蚀行为。通过电化学分析在腐蚀性环境中,通过电化学分析和缓慢的应变速率测试(SSRT),通过电化学分析来研究这一点。使用光学和扫描电子显微镜以及X射线衍射分析进行了微观结构评估。所获得的结果表明,尽管添加性生产的奥氏体不锈钢及其对应物合金之间的微观结构和机械性能存在固有的差异,但它们的电化学性能和应力腐蚀性易感性相似。添加性合金中的腐蚀攻击主要集中在奥氏体基质与二级铁素体相之间的界面上。在与单个奥氏体相具有单个奥氏体相的对手锻造合金的情况下,腐蚀攻击是由均匀的斑点均匀散布在外表面的。两种合金在腐蚀性环境中SSRT实验中的“帽和锥体”骨折的形式显示出延性衰竭。
金属和合金的腐蚀是化学和工艺行业遇到的最常见问题之一。效率低下的腐蚀控制措施通常会导致计划外的停机时间,巨大的经济损失,环境损失以及健康和安全危害的风险增加。因此,对于现有有毒的抗腐蚀剂剂,开发环境友好和具有成本效益的腐蚀抑制剂至关重要。这项工作的主要目的是在酸性环境下以不同的浓度来检查不同浓度的Mangifera Indica叶(MIL)的环保乙醇提取物(MIL)的功效。通过常规减肥方法以及吸附等温线分析评估了1M盐酸(HCL)中Mangifera iNIFAS叶提取物的抑制效率。使用傅立叶变换红外光谱(FTIR)和田间发射扫描电子显微镜(FE-SEM)评估了叶提取物中存在的化合物,并评估了SS-316L样品的表面形态的变化。减肥方法的结果表明,由于表面覆盖率较高,抑制效率随着MIL提取物浓度的增加而增加。在14天内的最高抑制效率近63.43%,在1.0 m HCl中,SS-316 L每年获得0.433 mm的最小腐蚀速率,浓度为1000 ppm。MIL提取物在SS -316L表面上的吸附,遵循Freundlich吸附等温线,并获得吸附的自由能的获得值(∆g˚ADS= - 9.20 kj.mol -1)表示物理吸附机制。开发的基于回归的模型可以以良好的精度(> 80%)预测腐蚀速率与抑制剂浓度和暴露时间的函数。因此,目前的发现表明,叶叶提取物可以适当地用作一种廉价,无毒,可生物降解,有效的绿色腐蚀抑制剂,以保护酸性培养基中的不锈钢。