REPORTER Nickel Plate Express 将在二月份推出一系列独特的火车体验,旨在让所有年龄段的乘客感到愉悦。从浪漫的夜晚到适合家庭的乐趣,这些旅程将怀旧、娱乐和冒险完美地融合在一起。以下是有关二月份火车旅程的更多信息:情人节快车 2 月 14 日和 15 日,乘坐情人节快车庆祝爱情。这个迷人的旅程非常适合情侣和家庭。成人可以享受来自 Bountiful Board 的熟食杯,搭配香槟或气泡葡萄汁,而家庭则会喜欢家庭车厢中提供的甜点和丘比特潘趣酒。风景秀丽的逃离快车 乘坐 2 月 8 日和 9 日运营的风景秀丽的逃离快车,放松身心。这些 90 分钟的经济实惠的旅程邀请乘客体验历史悠久的火车旅行的魅力。成人票价仅为 15 美元,儿童票价为 12 美元(3 至 12 岁)。 乘客可以购买小吃和饮料,还可以预订熟食杯,享受更高级的体验。 威士忌和葡萄酒快车 2 月 8 日和 9 日,威士忌和葡萄酒快车将为您带来更美好的体验。乘客
在14 GPA的压力下,最近在LA 3 Ni 2 O 7-δ中发现了超导性特征,超导过渡温度约为80 K,引起了相当大的关注。研究电子结构的一个重要方面是辨别La 3 Ni 2 O 7-δ的电子接地状态与Cuprate超导体的母体状态(一种具有远距离抗铁磁性的电荷转移绝缘子)。通过X射线吸收光谱法,我们揭示了氧配体对Ni离子的电子接地态的影响,显示出类似于丘比特的电荷转移性质,但具有独特的轨道结合。此外,在LA 3 Ni 2 O 7-δ纤维中,我们使用谐振X射线散射测量值检测到Ni L吸收边缘的超晶格反射(1/4、1/4,L)。对共振的进一步检查表明,反射起源于Ni d轨道。通过评估反射的方位角依赖性,我们确认存在截面抗铁磁性旋转顺序和具有相同周期性的电荷的各向异性。我们的发现揭示了这两个成分之间的微观关系,在反射的散射强度的温度依赖性中。这项研究丰富了我们在高压下LA 3 Ni 2 O 7-δ中高温超导性的理解。
二维Terahertz光谱(2DTS)是一种核磁共振的Terahertz类似物,是一种新技术,旨在解决复杂的凝结物质系统中的许多开放问题。常规的理论框架普遍用来解释离散量子水平系统的多维光谱,但是对于紧密相关的材料中的集体激发的连续性是不足的。在这里,我们为模型集体激发的2DT(即分层超导体中的Josephson等离子体共振)开发了一个理论。从远低于超导相变的温度下的均值轨道方法开始,我们获得了多维非线性响应的表达式,这些反应适合于从常规的单模式场景中得出的直觉。然后,我们考虑在超导临界温度t c附近的温度,其中超出均值字段的动力学变得重要,并且常规直觉失败。随着t c接近t c的浮动增殖,对非线性响应的主要贡献来自反向传播的约瑟夫森等离子体的光学参数驱动器,该驱动器与均值范围的预测质量不同。与此相比,与一维光谱技术相比,例如第三次谐波产生,2DTS可用于直接探测热激发的有限摩肌等离子体及其相互作用。我们的理论很容易在丘比特中进行测试,我们讨论了约瑟夫森等离子体的当前背景以外的含义。
摘要自1911年发现超导性以来,追求高过渡 - 温度(T C)超导体一直是凝结物理学的核心重点。在丘比特和基于铁的超导体中的突破性超过了40 K麦克米兰极限,并将其确定为高温超导体。在2019年,在平面 - 平面无限层镍酸盐薄膜中报道了超导性,尽管t c <40 k。2023年,在高压加工的高压力摄入量下,biLayer ruddlesden-popper(RP)镍的液体氮气 - 温度超导率。在这里,使用巨大的氧化原子层逐层外观(goall-epitaxy)[1],我们报告(LA,PR)3 Ni 2 O 7膜中的环境压力超导性[2],具有40 k的发作t c。超导体 - 绝缘体过渡阶段图[3]。角度分辨光发射光谱(ARPES)测量[4,5]揭示了孔掺杂孔的多轨fermi表面。沿着布里渊区的对角线发现具有颗粒 - 孔对称特性的温度依赖性能隙[6]。这些环境压力镍超导体为揭示高温超导性机制提供了一个新的平台。参考文献[1]国家科学评论,NWAE429(2024)。[2]自然,doi:10.1038/s41586-025-08755-Z(2025)。[3] Arxiv:2502.18068。[4] ARXIV:2501.09255。[5] ARXIV:2501.06875。[6] ARXIV:2502.17831。查询:3943 6303
在单频哈伯族中继续寻找超导性的最强拟合度之一是基于单频梯的理论在预测丘比特菌酸耦合 - 偶联体积sr sr 14 - x ca x cu x cu 24 o 41 o 41的超导性方面的明显成功。最近的理论工作表明,在孔掺杂的多型梯子梯子中,完全没有准长范围的超导相关性,包括氧气位点上的孔和氧气 - 氧孔跳跃的孔之间的现实库仑排斥。在实验上,SR 14 -x Ca x Cu 24 O 41中的超导性仅在压力下发生,并且在尚未理解的一个远至二维的急剧过渡之前。我们表明,理解尺寸的交叉需要采用一个价值过渡模型,在该模型中,在cu-ion离子性中从 + 2到 + 1中发生了过渡,并将孔从Cu转移到O离子[S. S. Mazumdar,物理。修订版b 98,205153(2018)]。价值转变背后的驱动力是Cu 1 +的封闭壳电子配置,这是所有氧化物具有负电荷转移间隙的阳离子所共有的特征。我们对SR 14-x Ca x Cu 24 O 41进行虚假的实验预测,并讨论我们结果对分层的二维丘陵的含义。
超导体中的Ferrell-Glover-Tinkham(FGT)和规则定义了超级流体密度ρs,是由于能量隙以下t c的打开而在ω= 0处转移到ω= 0的δ函数的光电导率频谱(SW)。在高t c超导体中,强烈的电子玻色子耦合,自我能量效应和能量尺度的交织可以将ρs与各种高能过程联系起来,这使得fgt总规则在丘比特中是否有效,以及对配对机构的全面了解,fgt总规则是否有效。在这里,我们报告了近乎掺杂的dyba 2 Cu 3 O 7-δ薄膜中FGT总规则的高精度测量值。我们通过结合亚毫米微波干涉仪,Terahertz时域光谱和红外椭圆测量方法来解决SW的低能平衡,以独立地获得0.8 MEV和1.1 eV之间的复杂介电函数的真实和虚构部分(6-9000 cm--------------------1)。通过将Kramers-Kronig一致性分析应用于测量的光谱,我们发现遵守FGT总和规则,并且总的内映于保守的SW在±0之内。低于能量量表的2%〜0。6 ev。我们归因于在低于0的电导率光谱中观察到的特定异常。6 eV与电荷载体偶联到集体抗磁性自旋爆发的光谱。此处介绍的程序应用于近乎掺杂的Dyba 2 Cu 3 O 7-δ,为如何在其他掺杂水平和化合物中研究FGT总规则的方案。
简介。在过去的十年中,超导性的物理学一直在经历新的青年。对铁基超导体(IBSC)和Hy-Drides的发现和深入研究,这在很大程度上是促进的,而且还取决于对丘比特的基本和应用研究的进展。在这项工作中,我们报告了对差距结构,订单参数对称性和超流体密度行为的联合研究,并在互补技术的帮助下 - 对符号超导型非正式金属 - 正态正态正态金属 - 超导管(S-N-S-S-S)点(S-N-S)点接触和自我自我触发和自我自我firfird per-Prication Critister Perture Pristion。实验性distalis。测量细节。传输测量是在氦低温恒温器系统中进行的,温度控制器在±0之内稳定温度。01 K.使用定制的低噪声变量增益放大器测量电流 - 电压特性(IVC),然后是国家仪器采集系统。用量子设计MPMS XL-7 Squid磁力计对磁性交流敏感性测量进行了测量。综合和表征。在这项工作中,批量KCA 2 Fe 4 AS 4 F 2是从金属Ca,K,Fef 3粉末(作为碎片)中合成的,作为零件和预先合成的群体作为开始材料的起始材料6:3:3:3:3:2:2:10。XRD建立的单元格参数为a = 3。8612(2),C = 30。9367(13)°a r p = 6。 4%,与文献中给出的数据相吻合[1]。 通过RIR方法估计,1111和122杂质阶段的体积约为10%。9367(13)°a r p = 6。4%,与文献中给出的数据相吻合[1]。通过RIR方法估计,1111和122杂质阶段的体积约为10%。结果和讨论。有限的技术研究多晶样品中的超导能隙。这种方法之一是固有的多个Andreev Refrotions Spectroscopy
在钙钛矿中晶格电位强的非谐度的影响,包括分层的丘比特,三维型晶体和相关系统[1,2,3]。此外,铜氧化物(CUO)中Cuo 6八氏菌(Cuo)的氧气原子应该具有双重潜力。这一事实得到了许多高t c超导体和相关父系统的确定,包括Yba 2 Cu 3 O 7-δ,La 2-x Sr X Cuo 4,以及通过Exed X-Ray X-Ray x-Ray X射线吸收结构(exafs)实验,and-x ce x cuo 4-Δ计算(请参阅[1,2,4,5]及其中的参考)。在SuperContucting Ba 1-x K x Bio 3 [6]中观察到异常氧振动的相似情况。参考。[7]用Jahn-Teller Polaron模型解释了超导LA 2 CUO 4中双井潜力的出现。在参考文献中讨论了双钙壶中的双孔电池。[8],进行区域中心软模式的计算是为了使极性和八面体旋转不稳定性表征。这些电势中的声子模式可能很不寻常。由其他原子形成的过度原子笼中弱结合离子的非谐振动通常被称为嘎嘎作响。已经在诸如Val 10 +Δ[9],laterates [10],Detecaborides [11]的材料中观察到它们。最近,建议在高压下合成的四倍体cucu 3 v 4 o 12 [3]。Rattling or other types of anharmonicity can lead, e.g., to Schottky-type anomaly of specific heat at low temperature [14], result in significant in- crease of electron e ff ective mass [15, 16, 17], suppress thermal conductivity [18, 19] or be a driving force for the superconduc- tivity [15, 16, 17, 20].在四倍的perovskites aa'3 b 4 o 12中
可以根据各种标准(包括物理特性和冷却成本)对超导体进行分类。** I型超导体**:具有一个临界场(HC),并在达到超导状态和正常状态之间突然过渡。** II型超导体**:拥有两个临界场HC1和HC2,它们是下部临界场以下的完美超导体,并返回到上临界场高于上方的正常电导率。包括无法使用BCS理论或相关理论来解释的重费超导体。这些材料具有独特的特性,可以无视传统的理解,并需要进一步的研究以充分理解其行为。超导体根据其临界温度分为三组:低温超导体(LTS)低于77K,高温超导体(HTS)高于77K,而室温超级导体。77K的分界点显着,因为液氮可用于在此温度下实现材料的超导性。大多数基于元素的超导体是I型,但是存在一些例外,例如niobium,Technetium和某些碳同素同素同素。合金等合金具有超导性能。陶瓷,包括丘比特和YBCO家族,也表现出高温超导性。其他材料(如镍和Ruddlesden-popper相似)被发现在较低温度下是超导的。超导体的分类并不详尽,并且正在进行的研究继续发现具有独特特性的新材料。基于铁的超导体,二吡啶镁,palladates和其他化合物的潜力表现出超导性的潜力。超导体的发现,例如HG3NBF6和HG3TAF6,导致了材料科学领域的重大进步。这些化合物在7 K(-266.15°C; -447.07°F)以下表现出超导性,使其对于各种技术应用都很有价值。最近的突破导致了新的超导体的发展,包括无限层镍和五重杆层方形 - 平面镍镍,这表明在绝对零以上的温度下表现出超导性。此外,科学家在理解超导性的基础机制方面取得了重大进展。例如,发现二吡啶镁(MGB2)的发现使人们对高温超导体所需的特性有了更深入的理解。随着研究人员继续探索超导体材料的前沿,他们正在发现其在尖端技术中应用的新可能性。
非常规超导性是由异常的正常导导(NC)态引起的[1-3]。重铁,铁 - 刺皮和丘比特高t c超导体的NC状态表现出由于磁性量子关键性而引起的,具有不寻常的电阻率的非寻常液体行为。的研究已经建立了超导性和磁性临界性之间的密切关系,从而广泛接受的是,超导(SC)配对相互作用是由这种爆发所提供的。因此,研究非传统副导体的NC状态对于获得SC配对机制的见解至关重要。在这项研究中,我们的重点是最近发现的超导体UTE 2,它在t c = 1处进行超导过渡。6 K [4,5]。 由于高磁场和存在多个超导相[1,4,6 - 8,10],超导致的性能引起了人们的重视(重新输入)。 配对对称性已进行了高度研究[11-16]。 此外,相当大的效果已致力于改善晶体质量,从而使T C从最初报道的值中显着提高到超过2 K [17-20]。 值得注意的是,最近的进展允许使用熔融盐钙(MSF)方法在高质量的单晶中成功观察量子振荡[21,22]。 那里,最初用磁场抑制超导转变温度t c。但是,它可以显着增强B ⋆〜15,t。6 K [4,5]。由于高磁场和存在多个超导相[1,4,6 - 8,10],超导致的性能引起了人们的重视(重新输入)。配对对称性已进行了高度研究[11-16]。此外,相当大的效果已致力于改善晶体质量,从而使T C从最初报道的值中显着提高到超过2 K [17-20]。值得注意的是,最近的进展允许使用熔融盐钙(MSF)方法在高质量的单晶中成功观察量子振荡[21,22]。那里,最初用磁场抑制超导转变温度t c。但是,它可以显着增强B ⋆〜15,t。当沿硬B轴施用场时,会观察到超导性的增强,其中尖锐的元磁(mm)过渡发生在35 t左右[23,24]。因此,观察到t c(b)中的最小值是磁场的函数。对于B - 和C轴之间的某些磁场角,磁场完全sup-