可以根据各种标准(包括物理特性和冷却成本)对超导体进行分类。** I型超导体**:具有一个临界场(HC),并在达到超导状态和正常状态之间突然过渡。** II型超导体**:拥有两个临界场HC1和HC2,它们是下部临界场以下的完美超导体,并返回到上临界场高于上方的正常电导率。包括无法使用BCS理论或相关理论来解释的重费超导体。这些材料具有独特的特性,可以无视传统的理解,并需要进一步的研究以充分理解其行为。超导体根据其临界温度分为三组:低温超导体(LTS)低于77K,高温超导体(HTS)高于77K,而室温超级导体。77K的分界点显着,因为液氮可用于在此温度下实现材料的超导性。大多数基于元素的超导体是I型,但是存在一些例外,例如niobium,Technetium和某些碳同素同素同素。合金等合金具有超导性能。陶瓷,包括丘比特和YBCO家族,也表现出高温超导性。其他材料(如镍和Ruddlesden-popper相似)被发现在较低温度下是超导的。超导体的分类并不详尽,并且正在进行的研究继续发现具有独特特性的新材料。基于铁的超导体,二吡啶镁,palladates和其他化合物的潜力表现出超导性的潜力。超导体的发现,例如HG3NBF6和HG3TAF6,导致了材料科学领域的重大进步。这些化合物在7 K(-266.15°C; -447.07°F)以下表现出超导性,使其对于各种技术应用都很有价值。最近的突破导致了新的超导体的发展,包括无限层镍和五重杆层方形 - 平面镍镍,这表明在绝对零以上的温度下表现出超导性。此外,科学家在理解超导性的基础机制方面取得了重大进展。例如,发现二吡啶镁(MGB2)的发现使人们对高温超导体所需的特性有了更深入的理解。随着研究人员继续探索超导体材料的前沿,他们正在发现其在尖端技术中应用的新可能性。
主要关键词