H. Sugaya、A. Toyoda、T. Itoh、N. Tsutsumi 等人。 (2019)通过 TALEN 介导的线粒体基因组编辑治愈细胞质雄性不育。纳特。植物 5:722–730。 Mok, YG, S. Hong, S.-J. Bae,S.-I. Cho 和 J.-S. Kim (2022) 针对植物叶绿体 DNA 进行 A 到 G 碱基编辑。纳特。植物 8:1378–1384。 Nakazato , I. , M. Okuno , H. Yamamoto , Y. Tamura , T. Itoh , T. Shikanai , H. Takanashi , N. Tsutsumi 和 S. Arimura ( 2021 ) 拟南芥质体基因组中的靶向碱基编辑。纳特。植物 7:906–913。
治疗方法(作用机制) 1)抑制产生毒性蛋白质的DNA/RNA(ASO、shRNA等)⇒Tofersen,一种用于治疗ALS的ASO(FDA于2023年批准) 2)编辑异常的DNA/RNA使其正常化(CRISPR系统,一项诺贝尔奖获奖技术)⇒镰状细胞病/β-地中海贫血的体外基因组编辑疗法(MHRA于2023年批准) 3)将DNA/RNA引入细胞以补充(过度表达)缺失的蛋白质⇒使用AAV9过度表达用于SMA的正常SMN基因(PMDA于2020年批准)
Wiltsie 博士是一名儿科血液学家/肿瘤学家,专攻神经肿瘤学,特别关注神经纤维瘤病和癌症易感综合征。她在临床试验开发方面拥有丰富的经验,并与儿童脑肿瘤联盟合作开发了一项目前由 NIH 资助的复发和难治性脑肿瘤试验。Wiltsie 博士积极参与儿童肿瘤学组的临床试验,并接受过个性化医疗和分子检测方面的培训,她经常使用这些培训来治疗患有丛状神经纤维瘤和复发或难治性恶性肿瘤的儿童。通过与 Burr 质子中心和放射肿瘤学的合作,她经常照顾来自外部机构和国际的中枢神经系统恶性肿瘤患者。这包括定期参加多学科会议和跨多个亚专业的合作,以提供最佳的脑肿瘤儿童护理,并具有强大的
摘要:在过去的几年中,人们认识到,神经纤维瘤病相关肿瘤的治疗通常需要采用与自发性肿瘤不同的方法。考虑到持续性、多发性肿瘤和新肿瘤生长的风险,治疗重点已转移到旨在尽量减少症状的治疗。在这篇综述中,我们将重点介绍将临床前数据转化为神经纤维瘤病患者的治疗试验,特别是 1 型神经纤维瘤病和 2 型神经纤维瘤病。成功抑制 1 型神经纤维瘤病和进行性视神经通路胶质瘤或丛状神经纤维瘤患者的 MEK 是患者护理的重大进步。对于恶性 NF1 肿瘤(如高级别胶质瘤和恶性外周神经鞘瘤)尚未取得类似的成功;对于 2 型神经纤维瘤病或神经鞘瘤患者也没有取得重大进展,尽管正在努力。
“人工智能与智能”校长 增山光一 2024年只剩下几天了,我想大家随着这一年的结束,都会经历忙碌的日子。今年,连续两年第三次荣获美国职业棒球大联盟最有价值球员奖的大谷翔平的出色表现令人印象深刻,但我个人认为,将棋界的七届冠军藤井苍太不仅今年,而且在过去几年中一直保持着连胜的势头。他实力雄厚的原因之一是对充分利用人工智能的将棋软件的研究。尤其是人工智能(AI)的发展令人瞩目。它的显著特点是能够从海量信息中检测出数据偏差和某些模式和趋势。我们经常听到这样的消息:人工智能全面投入实际应用的时代即将到来。据预测,目前 47% 的工作将被人工智能或机器人取代,许多科学家预测,到 2045 年,人工智能将超越人类的能力。人类智能和人工智能之间存在很大差异。人类可以从经验中学习,例如,“上次我失败的原因就是这样,所以下次我会尝试一种新的方法”,但计算机需要新的程序。人工智能还有一些事情做不到,尽管它擅长数据分析和任务自动化,但它并不擅长理解人类的情感或直观地做出反应。比如写小说、创作歌曲或从失败中吸取教训。从这个意义上来说,智力与才智之间存在着明显的区别。 “拥有丰富的知识和技能总是好的,但在未来,我们需要态度和品质来考虑如何将它们应用到我们自己的生活和未来中。” 目前,樱山初中的学生们在课堂上使用平板电脑已是理所当然。我们希望通过日常的使用,学生能够培养兴趣、知识和技能,体验学习的乐趣,并更有学习的动力。随着互联网和智能手机的普及,电脑已经变得非常普遍,但在带来便利的同时,也存在着风险。儿童卷入社交媒体上诽谤、中伤以及滥用在线留言板等犯罪行为的悲剧案件似乎也越来越多。我们希望孩子们在寒假期间可以将平板电脑带回家,以便他们完成家庭作业等,并且我们每天都会在学校进行信息伦理教育。但是,我们希望您也在家中讨论这个问题,并在使用电脑和智能手机之前监督和指导您的孩子确保他们的安全,例如设置适当的互联网环境(例如过滤)和设置使用时间规则。
人工智能在医疗领域的应用:现状和未来战略 Ryuji Hamamoto 日本国立癌症中心研究所医疗人工智能研究与开发部 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan 电子邮箱:rhamamot@ncc.go.jp
环境DNA分析吸引了作为一种创新技术,可以补充生态研究的全面和复杂性。环境DNA是从活生物体释放到土壤,水和大气等环境的DNA碎片。通过分析从环境样本中收集的环境DNA,可以澄清居住的生物的类型,数量和多样性。在过去的几年中,使用环境DNA的生物调查迅速扩散,因为与以前的调查相比,人力资源和成本负担要低得多,并且对生态系统没有负担。其中,已经检查了用于获取样品,数据处理方法以及利用所获得的栖息地信息数据的各种方法的方法,并且在所有领域(例如环境评估)中积极执行应用程序,超出了研究范围。该报告将介绍MIFISH方法的原理和前景,该方法促进了环境DNA技术的传播,以及将环境DNA分析应用于环境研究的示例,并对其可能性产生了鸟眼的看法。
下列的PCR结果是使用小骨宿主耗尽微生物DNA试剂盒从唾液样品中提取DNA的结果,显示有效的宿主DNA耗竭和微生物DNA恢复。使用QPCR分析,据估计,对于这些样品的宿主DNA耗竭和细菌DNA恢复估计高于90%。图1:使用小骨宿主耗尽微生物DNA试剂盒从唾液样品中提取的DNA的PCR。a)使用人β-珠蛋白引物对宿主DNA检测。b)使用16S引物对细菌DNA检测。m:DNA标记;泳道1、3、5:提取的总DNA,没有执行宿主耗竭步骤;泳道2、4、6:宿主耗尽的(H. dep)DNA使用脊柱状宿主耗尽微生物DNA试剂盒提取;泳道7:PCR阴性对照。
原理:胶质母细胞瘤(GBM)是最具侵略性的原发性脑癌类型,并包含有助于肿瘤生长和治疗性抗性的自我更新GBM干细胞(GSC)。然而,对GSC治疗耐药性的分子决定因素知之甚少。方法:我们对患者衍生的GSC中的去泛素化酶(DUB)进行了全基因组分析,并使用基因特异性shRNA来识别有助于GSC存活和放射线抗性的重要DUB基因。随后,我们采用质谱和免疫沉淀来显示USP14和AlkBH5之间的相互作用,并确定了上游激酶MST4,这对于碱性化和稳定碱的稳定至关重要。此外,我们进行了集成的转录组和M 6 A-SEQ分析,以发现影响GSC辐射势的ALKBH5的关键下游途径。结果:我们的研究证明了去泛素酶USP14在维持GSC的干性,致癌潜力和放射线的重要作用。USP14通过防止其K48连接的泛素化和通过HECW2降解M 6 A脱甲基碱ALKBH5。通过MST4在丝氨酸64和69处的AlkBH5磷酸化增加了其与USP14的相互作用,从而促进了AlkBH5的去泛素化。此外,ALKBH5以取决于YTHDF2的方式直接与USP14转录本相互作用,建立了一个正反馈环,该反馈环维持GSC中两种蛋白质的过表达。暴露于电离辐射(IR)后,在GSC中进一步刺激了此信号级联。MST4-USP14-AlkBH5信号通路对于增强干细胞样性状,促进DNA双链断裂的同源重组修复以及促进GSC中的放射性和肿瘤性。用小分子IU1抑制USP14会破坏ALKBH5去偶联性,并提高IR疗法对GSC衍生的脑肿瘤异种移植物的有效性。结论:我们的结果将MST4-USP14-AlkBH5信号通路确定为治疗GBM的有前途的治疗靶标。