摘要:神经丝轻链(NFL)目前被认为是轴突损伤和变性的标志。它们在生物液中的测量在诊断,预后和监测神经疾病(包括神经退行性痴呆症)中的治疗反应中具有有希望的作用。近年来,它们与临床表型的关系和疾病严重程度的度量得到了广泛的研究。在这里,我们审查了研究NFL和灰质(GM)和白质(WM)损害的研究之间的关联的研究。我们确定了大量研究在阿尔茨海默氏病(AD)和额颞痴呆(FTD)频谱的疾病中调查这种关联的研究。结果是异质的,可能是由于不同的方法学方法(包括NFL测量和成像分析)以及纳入标准所致。然而,NFL水平与GM萎缩,WM微结构破坏,葡萄糖低代谢和蛋白质积累的正相关,总是出现,确认NFL是神经退行性痴呆症的可靠生物标志物的作用,即非具体。
摘要:多药(MDR)超级细菌可以破坏血脑屏障(BBB),从而导致促炎性调节剂的连续弹药,并诱导严重感染相关的病理学,包括脑膜炎和脑脓肿。宽光谱或物种特异性抗毒剂(β-乳糖酶抑制剂,多黏膜蛋白,万古霉素,Meropenem,Plazomicin和Sarecomicin和Sarecycline)和生物相容性多(乳酸 - 糖 - 甘油酸)(Plga)纳米酸(Pla)纳米纳波特菌株已被用来处理这些迷雾。但是,需要具有广泛影响的新的治疗平台,不需要发挥脱靶的有害影响。膜囊泡或细胞外囊泡(EV)是脂质双层封闭的颗粒,由于其绕过BBB约束的能力,具有治疗潜力。来自肠道菌群的细菌衍生的电动汽车(BEV)是有效的转运蛋白,可以穿透中枢神经系统。实际上,可以通过表面修饰和CRISPR/CAS编辑来重塑BEV,因此代表了一个新的平台,用于赋予防止违反BBB的感染的保护。在这里,我们讨论了与肠道菌群和益生菌衍生的BEV有关的最新科学研究,以及它们的治疗方法,以调节神经递质和抑制Quorum感应性,以治疗诸如parkinson's and parkinson's和alzheimerseseasesessesess,以抑制Quorum sensiss。我们还强调了益生菌衍生的BEV对人类健康的好处,并提出了开发创新异源表达系统来打击BBB跨性病原体的新方向。
神经网络 167 2014 42 130 抗压强度 92 2015 32 85 混凝土 54 2014 25 45 机器学习 34 2019 26 29 建模 32 2011 21 29 预测 22 2017 23 22 支持向量机 19 2018 11 17 深度学习 17 2019 13 13 回归 17 2015 20 17 高性能混凝土 15 2015 15 14 粉煤灰 13 2014 14 12 再生骨料混凝土 13 2016 15 13 弹性模量 12 2014 15 11 人工智能 11 2016 15 9 沥青混凝土 11 2018 6 9 随机森林 10 2019 7 7 自密实混凝土 10 2013 6 8 抗弯强度 9 2018 11 9 混合料设计 9 2013 11 9 腐蚀 8 2017 9 6 耐久性 8 2015 14 8 模糊逻辑 8 2011 9 7 高强度混凝土 8 2013 10 8 力学性能 8 2018 11 8 无损检测 8 2015 9 8 剪切强度 8 2013 5 7 声发射 7 2017 5 6 ANFIS 7 2015 12 7 水泥砂浆 7 2016 6 7 动态模量 7 2018 5 6 遗传编程 7 2014 7 7 钢筋混凝土 7 2016 6 6 碳化 6 2014 10 6 水泥 6 2013 10 6 高温 6 2017 7 5 纳米二氧化硅 6 2017 7 5 优化 6 2014 12 6 孔隙率 6 2015 7 6 硅灰 6 2014 9 6 强度 6 2011 9 4 粘结强度 5 2015 5 5 土聚合物 5 2017 5 5 图像处理 5 2017 6 5 微观结构 5 2015 6 5 矿渣 5 2011 7 5
在不影响储能器件电化学性能的同时,将电致变色等多功能特性集成到储能器件中,可以有效促进器件多功能化的发展。与无机电致变色材料相比,有机材料具有制备简便、成本低、颜色对比度大等显著优势,其中大部分聚合物材料表现出优异的电化学性能,可广泛应用于储能器件的设计和开发。本文重点介绍有机电致变色材料在储能器件中的应用,详细讨论了不同类型有机物的作用机理、电化学性能以及有机电致变色材料在相关器件中的不足之处。
大量核素和电子的自组织导致物质出现不同相。相代表一种可以在空间上无限复制的组织方式,其特性会随着外场的变化而不断变化,与其他相不同。因此,当材料经历相变时,某些系统特性会发生变化。相变的一般特征是,它要么涉及根据相变的朗道范式 1 – 3 的序参量的不连续性,要么涉及拓扑不变量的变化 4、5。发现、表征和控制物质的不同相是凝聚态物理学和材料科学的核心任务。特别是,对二维系统中相变的研究在促进我们对相变的理解方面发挥了至关重要的作用(图 1)。 2D 材料 6 – 10 是可以在两个方向上无限复制,但在第三个方向上具有原子级厚度的物质。例如,单层 MoS 2 的厚度为 6.7 Å,在通过机械剥离 6 制备的实验室样品中,平面内厚度通常为微米,因此,其长宽比为 ~10 3 或更大。为了进行比较,一张典型的 A4 大小的纸(~100 μm × 29.7 cm × 21 cm)的长宽比也相似,为 ~10 3 。虽然 2D ↔ 3D/1D 相变无疑是有趣的讨论主题,但在这里,我们重点关注 2D → 2D 转变。最早对 2D 相变的研究大多是理论上的;例如二维 Ising 自旋模型的精确解 11 、 Hohenberg–Mermin–Wagner 定理的提出 12 , 13 以及 Kosterlitz–Thouless 转变的发现 14 , 15 (图 1 )。20 世纪 80 年代初,半导体技术的进步使得人们能够实验研究半导体界面和强磁场下的二维电子系统,从而带来了突破性的
量子发射器已成为基本科学和新兴技术的重要工具。近年来,12 eld的重点已转移到探索和识别新的量子系统,该系统由原子上薄的二维材料的新兴库启用。在这篇综述中,我们强调了2D系统中量子发射器工程技术的当前状态,重点是过渡金属二烷核化合物(TMDCS)和六角形氮化物。我们首先要回顾TMDC的进度,重点是发射机工程,调整其光谱特性以及观察层间激子的能力。然后,我们讨论HBN中的发射器,并专注于发射器的起源,工程和新兴现象 - 跨越超分辨率成像和光学自旋读数。我们通过讨论在具有等离子和介电光子腔的2D宿主中整合发射器的实践进步,并由量子光 - 形式相互作用支撑。我们结束了实践芯片量子光子应用的途径,并在这项研究中强调了挑战和机遇。
转化和生物学,但现在已扩展到基于纳米材料(NM)载体的使用。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。 13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。 尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。 在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。 然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。 我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。 尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。
摘要在纳米材料力学实验室和俄罗斯科学学院机械工程学研究所的纳米材料力学和缺陷理论中对研究活动进行了简要综述。它涵盖了旨在解释和理论描述这些材料机械行为的以下特征:与错位的经典Hall-Petch法律,同质和异构的成核的偏差,晶粒边界滑动,其适应性的机制以及其适应性,旋转变形,旋转变形,变形二,变形的晶粒和范围的机制,以及相互作用的范围和相互作用。讨论了一些最重要且最有趣的结果,并将其与实验研究和计算机模拟的可用数据进行了比较。