摘要:跨介质飞行器是一种既能在水中潜航,又能在空中飞行的新型概念飞行器。本文基于多旋翼无人机入出水结构模型,设计了一种新型水空多介质跨介质飞行器。基于设计的跨介质飞行器结构模型,利用OpenFOAM开源数值平台进行单介质气动特性分析和多介质跨介质流动分析。采用滑移网格计算单介质空气旋翼和水下螺旋桨的旋转流动特性。为防止网格运动变形引起的数值发散,采用重叠网格法和多相流技术对跨介质飞行器入出水进行数值模拟。通过以上分析,验证了跨介质车辆在不同介质中的流场特性,并得到了跨介质过程中不同入水角度下车体载荷及姿态的变化情况。
Micro Motion 5700 变送器上的 Smart Meter Verification Professional 还提供非均匀涂层检测、安装验证、最佳流量范围检测和两相流检测。所有配备增强型核心处理器的变送器均附带 90 天试用版。90 天试用期过后,Smart Meter Verification 的基本版本将提供简单的通过/失败结果和简单的诊断,这些诊断不会中断您的流程。
本次会议征求的论文范围反映了多维引擎建模领域的真正多学科性质。该会话涵盖了多维引擎建模所涉及的模型和工具的开发和应用的进步。这包括化学动力学,燃烧和喷雾建模,湍流,传热,网格产生以及针对提高计算效率的方法。使用多维建模的论文,以更深入地了解与湍流传输,瞬态现象和化学反应相关的过程,还鼓励了两相流。
Egill Juliusson,以前是Landsvirkjun 1简介核和地热工业开始发布截至1950年代的饱和蒸汽流量研发。碳氢化合物生产行业在1990年代开始对湿天然气计量研发变得更加感兴趣。具有饱和蒸汽和湿天然气流是两相流量计量挑战,初始湿天然气流量计量研究包含现有的饱和蒸汽计量方法。但是,碳氢化合物行业的研发的随后方向与蒸汽行业的研发有所不同。碳氢化合物行业的两相测定开发并没有倾向于渗透回,或者至少没有被蒸汽行业采用。通常缺乏独立行业之间的沟通和思想转移。碳氢化合物生产行业已经开发了流量计量技术,如果只有知识转移,可能会使包括可再生能源领域在内的其他行业受益。
背景:Hansen等。(2018)引入了一组方程,这些方程式与多孔培养基中不混溶的两相流中的不同渗流和热力学速度有关。他们的工作目的是根据热力学考虑,在多孔介质中的流动理论下呈现一组新方程。后来,Roy等。(2022)考虑了类似关系的论文。在两篇论文中,为此关系定义了共同速度的名称。Roy等人提出的结果。(2022),显示出行为。目的:主要目的是研究普通热力学中可能的类似线性关系,将热力学部分摩尔体积与二元混合物中不同物质占据的可测量摩尔体积相关联。此关系称为共摩尔体积。方法论:与连续方法相反(例如hansen等人采用的理论中使用的修订版。(2018),这项工作着重于使用分子动力学(MD)模拟以及通过实施Voronoi-Tessellations的几何分析,以研究三种不同混合物中的部分摩尔量之间的关系。
摘要 —本文介绍了一种使用低全球变暖潜能值制冷剂 R1234yf 的两相流微通道热管理系统 (MTMS)。热测试载体 (TTV) 由嵌入基板的单个或多个热测试芯片制成,然后将其附着到 MTMS 上。该系统包括两个相同的铝制微通道散热器 (MHS),它们串联在冷却回路中,冷却回路还包括一个气体流量计、一个微型压缩机、一个冷凝器、一个节流装置和辅助测量组件。实验结果表明,热管理系统可以耗散 526 W/cm 2 的热通量,同时将结温保持在 120 °C 以下。对于具有更高结温(例如 175 °C)的 SiC MOSFET,预计当前系统耗散的热通量高达约 750 W/cm 2。详细分析了压缩机转速、节流装置开度、MHS 上的 TTV 布置、下游加热器对系统冷却性能的影响。研究表明,目前的
气溶胶喷射打印 (AJP) 是一种直接写入增材制造技术,已成为制造各种电子设备的高分辨率方法。尽管 AJP 在印刷电子行业中具有优势和关键应用,但 AJP 工艺本质上不稳定、复杂,并且容易出现意外的逐渐漂移,这会对印刷电子设备的形态产生不利影响,从而影响其功能性能。因此,对 AJP 进行现场过程监控和控制是不可避免的需求。在这方面,除了对 AJP 过程进行实验表征外,还需要物理模型来解释 AJP 中潜在的空气动力学现象。这项研究工作的目标是建立一个基于物理的计算平台,用于预测气溶胶流动状态,并最终实现对 AJP 过程的物理驱动控制。为了实现这一目标,我们的目标是提出一个三维 (3D) 可压缩、湍流、多相计算流体动力学 (CFD) 模型,以研究 AJP 过程中 (i) 气溶胶生成、(ii) 气溶胶输送和 (iii) 气溶胶在移动自由表面上沉积背后的空气动力学。沉积头以及气动雾化器的复杂几何形状是在 ANSYS - FLUENT 环境中建模的,基于专利设计以及从 3D X 射线微型计算机断层扫描 (l-CT) 成像获得的精确测量。随后使用光滑和软四边形元素的混合对构建的几何形状的整个体积进行网格划分,同时考虑膨胀层以获得靠近壁面的精确解决方案。采用基于密度和压力的 Navier-Stokes 形成的组合方法来获得稳态解,并将守恒不平衡控制在指定的线性化公差以下(即 10 6 )。使用具有可扩展壁面函数的可实现 k-e 粘性模型对湍流进行建模。此外,还建立了耦合的两相流模型来跟踪大量注入的粒子。CFD 模型的边界条件是根据从 AJP 控制系统记录的实验传感器数据定义的。使用因子实验验证了模型的准确性,该实验包括在聚酰亚胺基底上 AJ 沉积银纳米粒子墨水。本研究的结果为实施物理驱动的 AJP 现场监测和控制铺平了道路。[DOI:10.1115/1.4049958]
过去十年,对数据中心和网络服务的需求迅速增长。然而,由于更高效的电子硬件、向超大规模和云数据中心的迁移以及更高效的冷却基础设施等,近年来电力需求已经趋于稳定。本文对冷却技术进行了关键概述并讨论了研究差距。数据通信设施中的冷却技术大致可分为风冷和液冷系统。架空/地板下送风、热/冷通道布局和热/冷通道遏制是优化风冷系统性能的主要策略。架空地板架构已在数据通信设施中得到广泛采用,但存在大量气流泄漏(约 25-50%)。研究发现,最佳通风系统是硬地板设计,采用架空冷风输送和热风回风管道,而不是基于房间的送风和回风。冷通道遏制可以更好地降低机架的最高入口温度并抑制冷却系统故障时的温升,而热通道遏制可以提供更低的机架平均入口温度和更小的标准差,并且受服务器周围气密性的影响更小。随着机架功率密度超过 10 kW/机架且热流超过 100 kW/cm 2 ,传统的风冷系统不再是可行的热管理解决方案。喷雾冷却、冲击射流、浸没冷却、液冷微通道和热管等液体冷却方法是克服风冷系统容量限制的新兴技术之一。对于浸没冷却,过渡到过冷两相流沸腾、通过添加微结构或不规则性来创造更多的成核位点和更大的传热表面积来增强传热以及利用纳米流体是受到学者关注的突出增强策略。将电力电子模块浸入液体中可使热阻降低至空气冷却系统的 25%,或微通道或喷雾冷却等液体冷却系统的 30-50%。根据现有的冷却系统、总体热负荷和热点,热管系统可以作为独立单元或与空气冷却系统结合使用,即所谓的混合系统,为数据中心提供服务。与典型的空气冷却系统相比,混合系统可以分别降低 37-58% 和 20-70% 的年度冷却负荷系数和能耗。
关键词:扩展,生物过程开发,自动化,CFD,对基于微载体的工艺进行了更新的兴趣,用于用于疫苗和细胞疗法的大规模培养细胞的大规模培养,这推动了有效的,高电平,单一使用,单利用的工艺开发工具的需求,这些工具可以成功地转化为工业规模的系统。自动化的AMBR250®平台就是这样的技术,其体积在100 - 250毫升之间运行,并且既是高通量又是一次性。AMBR250在基于悬浮液的哺乳动物细胞培养应用方面表现出了显着成功。但是,尚无研究研究基于微载体的依从性细胞培养的过程。在任何细胞培养过程中,必须充分理解生物反应器的流体动力学特征,以便成功地扩展到大规模的生物反应器。在微载体的情况下,由于流体动力学必须考虑到颗粒固相的存在,因此存在另一个挑战。微载体上细胞培养的关键方面是实现完全微载体悬架所需的最小搅拌速度,N JS。在这些条件下,附着的细胞的表面积可用于从中从中转移养分(包括氧)向细胞和代谢产物的转移,而较高的速度几乎不会增加这些传输过程,并可能导致产生的损害流体动态应力1。因此,测量N JS并将测量值与基于计算流体动力学(CFD)进行比较以验证后者是非常有益的。如果设备经过特殊修饰,可以轻松地观察生物反应器中的两相流,可以通过实验研究这种悬浮条件,在实际培养过程中,这非常困难。一旦经过验证,CFD建模是分析流动模式,混合时间,平均值和本地特异性能量耗散速率和其他对扩展重要的参数的非常有用的工具,以优化整体生物反应器的几何形状。除了上述流体动态方面外,还同时进行了细胞培养研究,以分析微臂悬浮液,N JS和结果的细胞生长和在特征良好的传统旋转瓶烧瓶生物反应器中的培养性能2。参考文献1。Nienow,A。W.,Coopman,K.,Heathman,T。R. J.,Rafiq,Q.A.和C. J. Hewitt(2016)。“干细胞制造的生物反应器工程基础知识”。in:“干细胞制造”,(编辑。J.M.S. Cabral,C.L。 div silva,L。G. Chase和M. M. Diogo),Elsevier Science,美国剑桥;第3章,第43 - 76页。 2。 Rafiq,Q。 A.,Brosnan,K。M.,Coopman,K.,Nienow,A。W.和Hewitt,C.J。 (2013)在5升搅拌坦克生物反应器中的微载体上的人间充质干细胞培养。 (使用Q. A. Rafiq,K。M. Brosnan,K。Coopman和C.J. hewitt),生物技术。 Lett。,35,(2013):1233-1245; d;J.M.S.Cabral,C.L。div silva,L。G. Chase和M. M. Diogo),Elsevier Science,美国剑桥;第3章,第43 - 76页。 2。 Rafiq,Q。 A.,Brosnan,K。M.,Coopman,K.,Nienow,A。W.和Hewitt,C.J。 (2013)在5升搅拌坦克生物反应器中的微载体上的人间充质干细胞培养。 (使用Q. A. Rafiq,K。M. Brosnan,K。Coopman和C.J. hewitt),生物技术。 Lett。,35,(2013):1233-1245; d;div silva,L。G. Chase和M. M. Diogo),Elsevier Science,美国剑桥;第3章,第43 - 76页。2。Rafiq,Q。A.,Brosnan,K。M.,Coopman,K.,Nienow,A。W.和Hewitt,C.J。 (2013)在5升搅拌坦克生物反应器中的微载体上的人间充质干细胞培养。 (使用Q. A. Rafiq,K。M. Brosnan,K。Coopman和C.J. hewitt),生物技术。 Lett。,35,(2013):1233-1245; d;A.,Brosnan,K。M.,Coopman,K.,Nienow,A。W.和Hewitt,C.J。(2013)在5升搅拌坦克生物反应器中的微载体上的人间充质干细胞培养。(使用Q.A. Rafiq,K。M. Brosnan,K。Coopman和C.J. hewitt),生物技术。 Lett。,35,(2013):1233-1245; d;A. Rafiq,K。M. Brosnan,K。Coopman和C.J.hewitt),生物技术。Lett。,35,(2013):1233-1245; d;