等离子体系统在硅和二氧化硅蚀刻期间发生过多的聚合物形成的额外问题。当血浆中的游离碳原子相互联系而不是与其他原子形成挥发性物种时,这种聚合物形成。具有高碳与氟比率的蚀刻气体经常遇到这种情况,这是因为它们释放到等离子体的自由碳原子数量越大。反应器表面上的聚合物形成会影响蚀刻的可重复性,也可以作为颗粒污染的来源。可以通过氧血浆在以后的时间彻底去除该聚合物,但仍然需要减少其初始形成。实现这一目标的一种方法是改变蚀刻化学。在血浆中添加含有化合物的氧或氧将抑制聚合物形成,但本身将对等离子体的蚀刻特性产生影响[4]。
在渐近高密度下的夸克物质是微弱耦合的。在这种弱偶联方向上,假设夸克物质的大量热力学特性(假设基态,则众所周知,众所周知,部分接下来是下一步到隔壁到领先的顺序。然而,高密度的基态有望是一种颜色超导体,其中(至少某些)夸克的激发光谱显示出具有对强耦合的非扰动依赖性的缝隙。在这项工作中,我们计算高密度夸克物质的热态性能,而在有限间隙的情况下,在耦合中,在近代领先顺序(NLO)下的温度为零。我们以两种无质量夸克风味的极限工作,这对应于对称的对称核物质,并进一步假设与夸克化学势相比,间隙很小。在这些限制中,我们发现对声音压力和速度的NLO校正与间隙的前阶效应相当,并且进一步将两个量的数量提高到其值以上,而对于非驱动夸克物质的值。我们还提供了声音NLO速度的参数化,以指导高密度区域中的现象 - 我们进一步评论是否应期望我们的发现是否扩展到与中子恒星相关的三味夸克事物的情况。
摘要。蓝莓幼苗的幼年期通常持续 3 至 4 年。为了缩短这一时期并促进 FasTrack 育种,我们开发了转基因“ Aurora ”蓝莓植物,该植物具有蓝莓 FLOWERING LOCUS T 基因的组成性表达,使 T 0 转化体在短短 1 年内开花。为了评估这些转基因系在加速育种周期方面的潜力,我们将转基因“ Aurora ”与转基因南部高丛蓝莓“ Legacy ”杂交,称为 Mu-Legacy。Mu-Legacy 也表现出早期开花,这主要是由于转基因插入,使其适合 FasTrack 育种。经过 2 年多的表型分析,我们观察到转基因幼苗每年都会持续开花,而非转基因幼苗则不会开花。这些结果表明,无论是蓝莓 FLOWERING LOCUS T 基因的组成性表达,还是转基因“Legacy”中的特定转基因插入位点,都可以有效缩短蓝莓植物的幼年期。鉴于“Aurora”和“Legacy”在蓝莓生产中的重要性,这些转基因品系将成为加速蓝莓育种计划的宝贵工具。
估计公共报告信息收集的负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至华盛顿总部服务处、信息运营和报告理事会,地址:1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息未显示当前有效的 OMB 控制编号,则任何人都不会因未遵守信息收集而受到处罚。
本文探讨了为什么各国发动了如此多的网络攻击,却很少发起跨域行动(这里指网络和军事领域之间的行动)。我探讨了五种假设,以解释为什么大多数网络攻击不会与军事打击同时发生。我的分析表明,在这五种假设中,有两种是令人信服的。首先,国家攻击者出于基于内部分工的组织原因,做出不“跨域”的战略决策。其次,许多网络攻击者即使将网络和军事力量整合在一起,在跨域行动中仍面临重大技术挑战。其他三个原因不那么令人信服,包括对冲突升级的担忧、适用于网络空间的国际法以及网络空间行为规范。
摘要:近期量子设备有望彻底改变量子化学,但是使用当前嘈杂的中间尺度量子(NISQ)设备的模拟由于其对错误的敏感性很高,因此不实用。这激发了NISQ算法的设计,利用经典和量子资源。虽然有几个发展显示了地面模拟的有希望的结果,但将算法扩展到激发态仍然具有挑战性。本文介绍了受戴维森算法启发的两种具有成本效益的激发算法。我们将Davidson方法实施到量子自符合方程式统一耦合群集(Q-SC-EOM- UCC)兴奋状态方法适用于量子硬件。讨论,实施和测试了产生所需激发态的电路策略。通过模拟H 2,H 4,LIH和H 2 O分子的模拟,我们证明了所提出的算法(Q-SC-SC-EOM-UCC/Davidson及其变异变体)的性能和准确性。与古典戴维森方案类似,Q-SC-EOM-UCC/Davidson算法能够瞄准所需特征的少数激发态。
Grohskopf LA,Sokolow LZ,Broder KR,Walter EB,Fry AM,Jernigan DB。预防和控制季节性流感疫苗的疫苗:免疫实践咨询委员会的建议 - 美国,2018 - 19年流感季节。MMWR推荐REP 2018; 67(no。RR-3):1–20。 doi:http://dx.doi.org/10.15585/mmwr.rr6703a1RR-3):1–20。doi:http://dx.doi.org/10.15585/mmwr.rr6703a1
在下周,我们的数学课将继续使用地位价值策略,以更深入地了解1,000之内的加法和减法。我们将继续使用模块4的简化策略,我们将使用位置价值语言来解释为什么我们的策略起作用。
最近,一种名为体积打印 (VP) 的新型基于光的制造方法已成为此类应用的一种有前途的技术,它能够在几秒钟内打印复杂的厘米大小的模型。[26,27] 最近的研究表明,使用从玻璃到生物聚合物等材料,可以创建中空、可灌注结构,并可能针对中尺度血管系统。[28–31] 然而,与上述所有方法一样,VP 也无法覆盖从 µ m/亚 µ m 到 cm 的分辨率范围,因此目前将其应用限制在特征 > 100–200 µ m 的微流体结构上。另一种基于光的方法双光子烧蚀 (2PA) 则提供了互补功能,虽然打印时间和构造尺寸有限,但达到了所有生物制造方法中最高的分辨率(≤ 1 µ m)。 [8] 2PA 是基于高强度脉冲激光诱导的多光子电离,[32,33,34] 并且已被探索用于各种应用,从“纳米手术”到形成细胞指导微通道。[35–41]