1儿科,美国密苏里州堪萨斯城儿童慈悲城市; 2美国田纳西州纳什维尔范德比尔特大学医学中心儿科学系; 3美国纳什维尔范德比尔特大学医学中心医学系; 4贝勒医学院传染病科儿科学系和美国德克萨斯州休斯敦的德克萨斯儿童医院; 5美国宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院儿科学系,美国宾夕法尼亚州,美国; 6全国儿童医院和美国俄亥俄州立大学的传染病和宿主国防部儿科系,美国俄亥俄州哥伦布; 7加利福尼亚大学旧金山分校和贝尼奥夫儿童医院儿科 - 美国加利福尼亚州旧金山旧金山; 8美国田纳西州孟菲斯的圣裘德儿童研究医院儿童传染病系; 9辛辛那提大学医学院儿科,辛辛那提儿童医院医疗中心,美国俄亥俄州辛辛那提; 10传染病系,密苏里大学堪萨斯城,堪萨斯城,美国密苏里州; 11儿科,华盛顿大学和西雅图儿童研究所,美国华盛顿州西雅图; 12分子病毒学和微生物学系,美国德克萨斯州休斯敦贝勒医学院;和13美国纳什维尔范德比尔特大学医学中心生物统计学系
1儿科,美国密苏里州堪萨斯城儿童慈悲城市; 2美国田纳西州纳什维尔范德比尔特大学医学中心儿科学系; 3美国纳什维尔范德比尔特大学医学中心医学系; 4贝勒医学院传染病科儿科学系和美国德克萨斯州休斯敦的德克萨斯儿童医院; 5美国宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院儿科学系,美国宾夕法尼亚州,美国; 6全国儿童医院和美国俄亥俄州立大学的传染病和宿主国防部儿科系,美国俄亥俄州哥伦布; 7加利福尼亚大学旧金山分校和贝尼奥夫儿童医院儿科 - 美国加利福尼亚州旧金山旧金山; 8美国田纳西州孟菲斯的圣裘德儿童研究医院儿童传染病系; 9辛辛那提大学医学院儿科,辛辛那提儿童医院医疗中心,美国俄亥俄州辛辛那提; 10传染病系,密苏里大学堪萨斯城,堪萨斯城,美国密苏里州; 11儿科,华盛顿大学和西雅图儿童研究所,美国华盛顿州西雅图; 12分子病毒学和微生物学系,美国德克萨斯州休斯敦贝勒医学院;和13美国纳什维尔范德比尔特大学医学中心生物统计学系
微塑料已成为全球一个巨大的问题,因此,研究其对人类和环境健康的可能影响很重要。在这项研究中,斑马鱼胚胎分别比较了两种不同尺寸的聚苯乙烯微塑料(PS -MP),分别为1 µm和3 µm,在0.01、0.1、1.0、1.0和10.0 mgl -1时,并监测高达72小时。毒性测试表明,PS-MP都没有改变胚胎的存活率和正常的孵化过程。相反,两种大小的浓度较高,导致心率和表型变化的增加。以10.0 mgl -1的浓度在幼虫中输入和积累的两个大小的PS -MP,相同的浓度导致凋亡过程的增加与氧化还原稳态变化相关。报告的结果对暴露于PS-MP的负面影响并提供了有关其毒性的新信息的现实看法,也考虑了其尺寸。
遗传筛选已广泛用于探测核基因之间的相互作用及其对表型的影响。然而,由于缺乏工具来绘制负责的多态性,探测线粒体基因与其表型结果之间的相互作用尚未成为可能。在这里,使用我们之前在果蝇中建立的工具包,我们分离了 300 多个重组线粒体基因组,并绘制了细胞色素 c 氧化酶 III 残基 109(CoIII 109)处自然发生的多态性,这完全挽救了与细胞色素 c 氧化酶 I(CoI T300I)点突变相关的致死性和其他缺陷。通过脂质组学分析、生化测定和表型分析,我们发现 CoIII 109 多态性调节心磷脂结合以防止由 CoI T300I 突变引起的复合物 IV 不稳定性。这项研究证明了在动物线粒体 DNA 中进行遗传相互作用筛选的可行性。它揭示了与线粒体 DNA 相关的疾病的潜在复杂的基因组内相互作用以及它们如何影响疾病的表现。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
1医学院,苏米州立大学,2,乌克兰苏米40007,Rymskogo-Korsakova St. 2; e.gusak@med.sumdu.edu.ua(y.h。); viktoriia.korniienko@lu.lv(V.K.); s.bolshanina@chem.sumdu.edu.ua(S.B.); a.pereshyvailo@med.sumdu.edu.ua(O.T.); p.myronov@med.sumdu.edu.ua(p.m.); marharyta.holubnycha@student.sumdu.edu.ua(M.H.); maksym.pogorielov@lu.lv(M.P。)2西里西亚技术大学,波兰西利维特44-100大学的化学学院,3吉尔加瓦斯街3号原子物理与光谱研究所,拉特维亚街3号,拉特维亚,拉脱维亚4号,拉维亚4部,部门,部门医学生物化学与生物物理学,UMEECHOCHISICS,UMEå大学,SE-901 87 UMEEE, anna.butsyk@umu.se(A.B.); thomas.boren@umu.se(T.B.)5纳米瓦韦,波兰华沙02-676; rafal.banasiuk@nanopure.pl 6机械学院,GDA´nsk技术大学,G。Narutowicza,Narutowicza 11/12,80-233 GDA´NSK,波兰7,波兰7,波兰7物理化学系,化学与盖基科斯科斯学院化学学院,化学与吉尼乌斯大学,维尔尼乌斯大学。24,LT-03225 Vilnius,Lithuania *通信:v.golubnichaya@med.sumdu.edu.edu.ua或vicorn77g@gmail.com(V.H. ) ); arunas.ramanavicius@chf.vu.lt(A.R.)24,LT-03225 Vilnius,Lithuania *通信:v.golubnichaya@med.sumdu.edu.edu.ua或vicorn77g@gmail.com(V.H.); arunas.ramanavicius@chf.vu.lt(A.R.)
标准治疗 — 口服抗代谢药羟基脲( Droxia 等)是镰状细胞病的标准一线治疗方法;它能诱导胎儿血红蛋白的产生,减少炎症和溶血,减少痛风发作的频率和输血的需要。1 氨基酸 L-谷氨酰胺 (Endari)、静脉 P-选择素阻滞剂 crizanlizumab (Adakveo) 和口服血红蛋白 S (HbS) 聚合抑制剂 voxelotor (Oxbryta) 可用作辅助治疗或二线治疗。2,3 L-谷氨酰胺被认为可以减少镰状红细胞的氧化损伤。Crizanlizumab 与活化内皮细胞和血小板上的 P-选择素结合,抑制粘附,减少血管闭塞,增加微血管血流。 Voxelotor 可抑制 HbS 聚合,减少红细胞镰状化、溶血和贫血。同种异体干细胞移植可治愈。4
急性髓系白血病 (AML) 是一种造血系统恶性肿瘤,包含不同的遗传亚型,但具有分化停滞的共同特征。在异常造血中,克服分化阻滞已成为一种有吸引力的治疗策略。在对遗传上不同的 AML 细胞系进行筛选时,观察到组蛋白去乙酰化酶抑制剂 (HDACis) 导致髓系分化标志物 CD11b 表达上调。这些导致细胞形态发生变化、增殖受阻和细胞周期停滞在 G1 期。为了深入了解这些化合物的作用机制,我们计划制备不含锌结合基序的无活性探针。然而,这些化合物出乎意料地仍然能够启动分化,尽管是通过不同的靶标和 G2 停滞。后续的 RNA 测序研究支持 HDACis 的分化表型,并强调了细胞周期调节激酶在探针分子中观察到的影响中的作用。我们随后发现这些化合物可抑制 Aurora A 和 GSK3α 激酶,表明它们有潜力成为 AML 分化治疗的治疗靶点。我们的工作支持了正确验证无活性工具化合物及其识别新靶点的潜力的重要性。
参考文献1 Sung H等。ca Cancer J Clin。2021; 10.3322/caac.21660 2 O'Reilly D等。世界J Clin Oncol。2021; 12(3):164-182。3 Bergin A等。f1000res。2019; doi:10.12688/f1000research.18888。4 Zhang Y等。 BMC癌。 2021; 21(568)。 5 Yoder R等。 NPJ乳腺癌。 2022; 8(1):80。 6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。4 Zhang Y等。BMC癌。 2021; 21(568)。 5 Yoder R等。 NPJ乳腺癌。 2022; 8(1):80。 6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。BMC癌。2021; 21(568)。5 Yoder R等。 NPJ乳腺癌。 2022; 8(1):80。 6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。5 Yoder R等。NPJ乳腺癌。 2022; 8(1):80。 6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。NPJ乳腺癌。2022; 8(1):80。6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。6美国癌症学会。三阴性乳腺癌的治疗。2023年11月访问7国家癌症研究所。seer癌统计事实:女性乳腺癌亚型。2023年11月访问。8 Sharma P.等。肿瘤学家。2016; 21(9):1050–1062。9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。9 Lin H等。exp mol Pathol。2013; 94(1):73-8。10 Goldenberg D等。oncotarget。2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。2018; 9(48):28989-29006。11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。11 Dieci MV等。NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。NPJ乳腺癌。2021; 7(1):101。12 Schrodi S等。Ann Oncol。 2021; 32(11):1410-24。Ann Oncol。2021; 32(11):1410-24。
越来越高的耐多药 (MDR) 病原体水平迫使人们发现新的生物活性化合物。为此,首次从埃及 Kafr El Sheikh 的黑沙滩分离出两种放线菌菌株,即灰红链霉菌和罗氏链霉菌,该地区是几家大型养鱼场的所在地。通过表型、生化和 16S rRNA 序列协议对分离株进行了鉴定。这两种菌株都对三种严重的 MDR 病原体表现出强大的抗菌活性:枯草芽孢杆菌、肠炎沙门氏菌和铜绿假单胞菌。使用气相色谱-质谱 (GC-MS) 鉴定了分离株滤液的生物活性化合物。对于 S. griseorubens ,可检测到的抗菌化合物是己酸、2-乙基-、2-乙基己基酯、正癸烷、十六烷酸甲酯、苯乙酸、蓖麻油酸和对羟基苯甲酸乙酯,而 S. rochei 则分泌十七烷、2,6-二甲基-、苯乙酸、邻苯二甲酸二丁酯、二十八烷、二十六烷和维生素 A 醛。这些结果强烈鼓励使用这些环保分离物作为生物防治剂,以对抗攻击养鱼场的 MDR 病原体。