⚫ 2 通道、双向转换器,用于混合模式 I 2 C 应用中 SDA 和 SCL ⚫ 兼容 I 2 C 和 SMBus ⚫ 电压电平转换范围为 0.8V 至 5.5V 和 2.2V 至 5.5V ⚫ 端口 A 工作电源电压范围为 0.8V 至 5.5V(正常电平) ⚫ 端口 B 工作电源电压范围为 2.2V 至 5.5V(静态偏移电平) ⚫ 5V 容限 I 2 C 总线和使能引脚 ⚫ 0Hz 至 1000kHz 时钟频率(由于中继器增加的延迟,最大系统工作频率可能低于 1000kHz) ⚫ 以 V CCB 为参考的高电平有效中继器使能输入 ⚫ 漏极开路输入/输出 ⚫ 无锁存操作 ⚫ 支持跨中继器的仲裁和时钟延长 ⚫可适应标准模式、快速模式和快速模式 Plus I 2 C 总线设备、SMBus(标准和高功率模式)、PMBus 和多个主设备 ⚫ 断电高阻抗 I 2 C 总线引脚
• 首个为量子通信设立的私人量子光学实验室 • 印度首家利用 Quantum Advantage 的金融科技公司 • 量子通信领域超过 12 个 IP • 与印度理工学院海得拉巴分校签署通信中心谅解备忘录 • 与印度理工学院鲁尔基分校、印度理工学院坎普尔分校和印度理工学院达尔瓦德分校开展研究合作 • 与亚利桑那大学量子网络中心 (CQN) 签署谅解备忘录 • 35+ 量子科学家致力于量子创新
通过将逻辑Qubits编码为特定类型的光子图状态,人们可以实现Quanth-tum中继器,从而使快速的纠缠分布率接近经典连接。但是,这些光子图状态的产生需要使用基于线性光学器件的传统方法来启动的源头。克服了这一挑战,已经提出了许多新方案,这些方案采用量子发射器来终止生成光子图状态。尽管这些方案有可能显着降低资源成本,但缺乏不同编码和不同产生方案之间的中继器演奏的系统比较。在这里,我们基于两个不同的图状态,即树图状态和中继器图状态。对于两种状态,我们比较了两个生成方案之间的性能,一个基于与辅助物质量子位耦合的单个量子发射器,另一个基于一个基于单个量子发射器与延迟反馈相关的单个量子发射器。我们在不同的系统参数上识别数值最佳方案。我们的分析提供了有关基于图形状态的量子中继器的生成方案的定义的明确指南,并提出了对不同方案的实验实现实验实现的要求。
量子中继器为长距离量子通信和量子互联网铺平了道路,量子中继器的概念基于纠缠交换,这需要实现受控量子门。频繁测量量子系统会影响其动态,这被称为量子芝诺效应 (QZE)。除了减缓其演化之外,QZE 还可用于通过在测量之间引入一组精心设计的操作来控制量子系统的动态。在这里,我们提出了一种基于 QZE 的纠缠交换协议,该协议几乎实现了单位保真度。我们的协议的实施只需要简单的频繁阈值测量和单粒子旋转。我们将提出的纠缠交换协议扩展到一系列中继站,以构建量子芝诺中继器,无论中继器的数量如何,这些中继器也几乎实现了单位保真度。我们的提议不需要受控门,从而降低了量子中继器的量子电路复杂性。我们的工作有可能通过量子芝诺效应为长距离量子通信和量子计算做出贡献。
抽象背景。与其他疗法相比,许多最近的随机对照试验报告了大脑 - 计算机界面(BCI)对上肢中风康复的效率。尽管报道了令人鼓舞的结果,但报告的结果有显着的变量。本文旨在研究不同BCI设计对中风后上行康复的有效性。方法。通过以95%的信心间隔计算对冲的s g值来评估合并和单个研究的效果大小。亚组分析,以检查不同BCI设计对治疗效果的影响。结果。该研究包括12项涉及298例患者的临床试验。分析表明,与对照疗法相比,BCI在改善上LIMB运动功能方面产生了显着的短期和长期效率(分别为HEDGE的G = 0.73和0.33)。基于我们的亚组分析,使用运动意图的BCI研究与使用的运动成像相比具有更高的效应大小(分别为HEDGE的G = 1.21和0.55)。使用带功率特征的BCI研究的效果大小比使用过滤器库的公共空间模式特征(分别是对冲的G = 1.25和-0.23)的效应大小明显更高。最后,与其他设备相比,使用功能性电刺激作为BCI馈电的研究具有最高的效果大小(Hedge's G = 1.2)。结论。这项荟萃分析证实了BCI对上限康复的有效性。我们的发现支持带功率特征,运动意图以及未来BCI的功能电刺激,用于中风后上行康复。
摘要 — 在量子中继器成熟之前,量子网络仍然局限于直接连接节点的有限区域或连接到公共节点的节点。我们通过使用安全经典中继器结合量子安全直接通信 (QSDC) 原理来构想量子网络,从而规避这一限制,量子安全直接通信是一种引人注目的量子通信形式,它直接通过量子信道传输信息。这一有前途的解决方案的最后一个组成部分是我们经典的抗量子算法。明确地说,在这些网络中,从抗量子算法中收集的密文使用 QSDC 沿节点传输,在节点处被读出,然后传输到下一个节点。在中继器处,信息受到我们的抗量子算法的保护,即使在量子计算机面前也是安全的。因此,我们的解决方案提供了整个网络的安全端到端通信,因为它能够在新兴的量子互联网中检测和预防窃听。它与运营网络兼容,并将享受流行互联网的引人注目的服务,包括身份验证。因此,它通过逐步演进升级,平滑了从传统互联网到量子互联网(Qinternet)的过渡。它将在未来充当量子计算网络中的替代网络。我们首次展示了由光纤和自由空间通信链路串联构成的基于安全经典中继器的混合量子网络的实验演示。总之,安全中继器网络确实可以使用现有技术构建,并继续支持通往未来量子计算机 Qinternet 的无缝演进路径。
龙桂璐就职于清华大学物理系和低维量子物理国家重点实验室,量子信息前沿科学中心,北京 100084,北京量子信息科学研究院,北京 100193。潘东就职于北京量子信息科学研究院,北京 100193,清华大学物理系和低维量子物理国家重点实验室,北京 100084。盛宇波就职于南京邮电大学电子与光学工程学院,南京 210003。薛其坤就职于清华大学低维量子物理国家重点实验室和物理系,量子信息前沿科学中心,北京 100084,北京量子信息科学研究院,北京 100193,南方科技大学,深圳 518055。陆建华就职于清华大学信息科学与技术学院,北京国家信息科学技术研究中心和量子信息前沿科学中心,北京 100084。Lajos Hanzo 就职于南安普顿大学电子与计算机科学学院,南安普顿 SO17 1BJ,英国。作者要感谢周增荣博士和魏世杰博士在量子抗性算法 LAC 中提供的帮助,并感谢与尹刘国教授的有益讨论。本研究部分由国家自然科学基金(批准号 11974205 和 11974189)、国家重点研发计划(批准号 2017YFA0303700)和广东省重点研发计划(批准号 2018B030325002)资助。L. Hanzo 谨感谢工程和物理科学研究委员会项目 EP/P034284/1 和 EP/P003990/1 (COALESCE) 以及欧洲研究委员会高级研究员基金 QuantCom(批准号 789028)的资金支持。
摘要 实现功能性量子中继器是长距离量子通信的主要研究目标之一。在目前采用的不同方法中,依赖于与确定性量子发射器接口的量子存储器的方法被认为是最有前途的解决方案之一。在这项工作中,我们专注于实现基于存储器的量子中继器方案的硬件,该方案依赖于半导体量子点 (QD) 来产生偏振纠缠光子。通过研究与光子源效率最相关的性能指标,我们选择了制造、加工和调谐技术方面的重大发展,旨在将高纠缠度与按需对生成相结合,特别关注 GaAs 系统代表性案例中取得的进展。我们继续提供与量子存储器集成的观点,既强调了自然-人工原子接口的初步工作,也评论了目前可用且可能可行的多种存储器解决方案(在波长、带宽和噪声要求方面)。为了完成概述,我们还介绍了基于纠缠的量子通信协议的最新实现,并强调了实际量子网络实现面临的下一个挑战。
受量子点核自旋控制和操纵方面的最新进展的启发,这些进展允许将电子自旋态转移到周围的核自旋集合中进行存储,我们提出了一种量子中继器方案,该方案结合了单个量子点电子自旋和核自旋集合,分别用作自旋光子接口和量子存储器。我们考虑使用嵌入高协同性光学微腔中的低应变量子点。量子点核自旋集合允许长期存储纠缠态,并且预示着纠缠交换是使用腔辅助门执行的。我们重点介绍了实现量子中继器方案所需的量子点技术的进步,该方案有望建立长距离高保真纠缠,其分布速率超过光子的直接传输。