摘要 — 最近的实验证明了在 DNA 和蛋白质等大分子中存储数字信息的可行性。然而,DNA 存储通道容易出现删除、插入和替换等错误。在 DNA 字符串的合成和读取阶段,会生成许多原始字符串的噪声副本。从这些噪声副本中恢复原始字符串的问题称为序列重建。该问题中的一个关键概念是错误球,它是所有可能序列的集合,这些序列可能由对原始序列应用有限数量的错误而产生。Levenshtein 表明,给定通道恢复原始序列所需的最小噪声副本数等于两个错误球交集的最大大小加一。因此,推导任何通道和任何序列的错误球大小对于解决序列重建问题至关重要。在 DNA 存储系统中,字符串中的多种错误(例如删除、插入和替换)可能同时发生。在这项工作中,我们旨在推导具有多种错误类型和最多三次编辑的通道的错误球大小。具体来说,我们考虑具有单删除双替换、单删除双插入和单插入单替换错误的通道。
摘要 — 在本文中,我们借助 MATLAB 模拟器研究了在 IBM-Q 硬件上运行的 Harrow-Hassidim-Lloyd (HHL) 量子算法中的错误传播和生成。HHL 是一种量子算法,在解决线性方程组 (SLE) 时,它可以比最快的经典算法(共轭梯度法)提供指数级加速。但是,如果没有错误校正,由于其复杂性,即使在 2 变量系统中也无法给出正确的结果。在本研究中,在 IBM-Q 中实现了 2 变量 SLE 的 HHL 量子电路,并在电路的每个阶段之后提取错误并与 MATLAB 模拟器进行比较。我们确定了三个主要的错误来源,即单量子位翻转、门不保真和错误传播。我们还发现,在辅助位旋转阶段,错误变大,但编码解决方案仍然具有高保真度。然而,在逆量子相位估计之后,解决方案大部分丢失,而逆量子相位估计是有效提取解决方案所必需的。因此建议,如果纠错资源有限,则应将其添加到电路的后半部分。
摘要:错误相关性被认为是BCI的有望作为执行错误校正或预防的一种方式,或标记数据以在线适应BCIS的控制模型。当前最新的BCIS是基于运动模拟的侵入性BCI,因此除了感觉运动皮质外,无法访问神经数据。我们在单个试验级别研究了在观察或运动成像(MI)控制BCI期间,误差的存在和可检测性与四翼型用户对BCI进行了两个离散类别。We show that error correlates can be detected using a broad range of classifiers, namely Support Vector Machine (SVM), logistic regression, N-way Partial Least Squares (NPLS), Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN) with respective mean AUC of the ROC curve of 0.645, 0.662, 0.642, 0.680 and 0.630在观察条件下,在MI-Control条件下,0.623、0.605、0.603、0.626和0.580。我们还建议这些误差相关的时间稳定。这些发现表明,使用基于侵入性运动模拟的BCI进行误差校正或预防,可以在临床试验中使用误差相关性。
摘要— 分析了检查机载激光扫描数字高程模型平面精度的当前技术水平。介绍了所提出方法的原理,包括数学方程。特别强调了用于与真实值进行比较的导出点的精度。应用最小二乘调整,通过迭代确定权重作为校正大小的函数来减少观测中误差的影响。使用来自丹麦新数字高程模型的数据进行了实际测试。所需的参考值是通过航空图像和摄影测量技术得出的。一些地面控制点由 GPS 确定。然后根据从该方法的实际使用中获得的经验讨论了该方法的可靠性和实用性。结论是,所提出的方法是准确的、对错误具有鲁棒性的并且具有自动化的潜力。
嘈杂的中间量子量子(NISQ)时代的主要重要特征之一是正确评估和考虑错误。在本文中,我们分析了当前(IBM)量子计算机中误差的主要来源,并提出了一个有用的工具(TED-QC),旨在促进任何量子电路预期的总误差概率。我们将这种总误差概率作为估计NISQ时代富达的下限的最佳方法,避免了将量子计算与任何经典计算进行比较的必要性。为了对比我们的工具的鲁棒性,我们计算了三种不同的量子模型中可能发生的总误差概率:1)ISING模型,2)量子相估计(QPE)和3)Grover的算法。对于每个模型,对参考模拟器的结果进行计算和基准测试,这是代表性和统计上显着的样本大小的误差概率的函数。在99%的情况下,分析令人满意。此外,我们研究了误差缓解技术如何消除测量过程中引起的噪声。这些结果已经计算为IBM量子计算机,但是工具和分析都可以轻松地扩展到任何其他量子计算机。
摘要在这项工作中,将牛津纳米孔测序作为量化放大DNA异质性的可访问方法。此方法可以快速量化缺失,插入和取代,每个突变误差的概率及其在复制序列中的位置。放大技术测试的是传统的聚合酶链反应(PCR),具有不同水平的聚合酶保真度(OnETAQ,phusion和Q5),以及滚动圆扩增(RCA)和PHI29聚合酶。还评估了使用细菌扩增的质粒扩增。通过分析每个样本中大量序列中误差的分布,我们检查了每个样本中的异质性和误差模式。该分析表明,Q5和渗流聚合酶表现出在扩增的DNA中观察到的最低错误率。作为二级验证,我们分析了使用细胞游离表达与放大DNA合成的SFGFP荧光蛋白的发射光谱。易易受错误的聚合酶链反应证实了报道蛋白发射光谱峰宽度与DNA误差率的依赖性。所提出的纳米孔测序方法是量化其他基因扩增技术准确性的路线图,从而使它们被发现,从而实现了所需蛋白质的更无均匀的细胞表达。
物理计算元素的响应时间是有限的,神经元也不例外。在皮质网络的分层模型中,每层都引入了响应滞后。物理动力学系统的这种固有属性导致刺激的处理延迟,并导致网络输出和启发性信号之间的时机不匹配,因此不仅会推断,而且还可以学习。我们引入了潜在平衡,这是一个慢速组件网络中推断和学习的新框架,通过利用生物神经元的能力来避免这些问题,以相对于其内存潜力进行输出。该原理可以独立于网络深度,可以实现准稳定推断,并避免需要分阶段可塑性或计算昂贵的网络松弛阶段。我们从依赖网络的广义位置和动量的前瞻性能量函数中共同得出脱离神经元和突触动力学。所得模型可以解释为具有连续时间,泄漏的神经元动力学和连续的局部局部可塑性的深层皮质网络中误差反向传播的误差。我们展示了对标准基准数据集的成功学习,并使用完全连接和连接的体系结构来实现竞争性能,并展示了如何将我们的原理应用于皮质微电路的详细模型。此外,我们研究了模型对时空底物缺陷的鲁棒性,以证明其在体内或在硅中的物理实现的可行性。§
引言:传统上,量子多体系统的研究集中于预测少体可观测量,如局部相关函数。最近,受量子热化和混沌[1]、量子系统的经典模拟[2]和量子引力[3]中基本问题的启发,物理学家们转向了一项互补的研究:量化多体动力学本身的复杂性。这一研究的核心是量子信息扰乱的概念;在几乎所有相互作用的多体量子系统中,最初在局部算子中编码的信息会逐渐变得高度非局部[4-6]。值得注意的是,最近的实验进展使得直接测量扰乱成为可能——这项任务最常见的是利用时间倒退演化[7-14],但也可以使用系统的多个副本[15-17]或随机测量[18,19]来执行。在这样的系统中,扰乱动力学、外部退相干和实验噪声之间的相互作用引发了一个基本问题:开放量子系统中量子信息扰乱的本质是什么[13,16,20 – 31]?在本文中,我们引入了一个基于算子尺寸分布的通用框架[32 – 35],用于捕捉局部误差对扰乱动力学的影响。具体来说,我们推测混沌多体系统中误差的传播从根本上受时间演化算子的尺寸分布控制,与微观误差机制无关。我们的框架立即为 Loschmidt 回声[36 – 38] 和非时序相关 (OTOC) 函数 [39,40] 提供了预测。具体来说,我们预测 Loschmidt 回声的衰减(用于测量与时间向后演化相关的保真度)发生在
摘要。误差指标可用于评估模型的表现,并已在气候变化研究中广泛使用。尽管文字中有大量的错误指标,但大多数研究仅使用一个或两个指标。由于每个度量标准都评估了参考数据和模型数据之间关系的特定方面,因此将比较限制为仅一个或两个指标限制了从分析中得出的见解范围。本研究提出了一个称为卑尔根指标的新框架和复合误差指标,以总结气候模型的整体性能并减轻多个误差指标结果的相互作用。卑尔根指标的框架工作是基于P规范的,并且选择了第一规范来评估气候模型。框架工作包括将非参数聚类技术应用于多个错误指标,以减少误差指标的数量,而信息损失最小。通过将欧洲欧元倡议可提供的大型区域气候模拟集合应用于卑尔根指标的检查。这项研究计算了38个不同的误差指标,以评估89种欧洲降水和温度的气候模拟的性能。将非参数聚类技术用于这38个指标,以减少欧洲八个不同子区域用于卑尔根指标中使用的指标数量。这些提供了有关不同区域中误差指标的性能的有用信息。结果表明,在检查单个模型时,可以观察到误差指标之间的矛盾行为。因此,该研究还强调了采用多个指标的重要性,具体取决于特定用例,以彻底了解模型行为。
理论也可能有助于解决量子计算和量子信息中的一些有趣问题(Carleo and Troyer 2017)。在本文中,我们应用在线学习理论来解决学习未知量子态的有趣问题。学习未知量子态是量子计算和量子信息中的一个基本问题。基本版本是量子态断层扫描问题(Vogel and Risken 1989),旨在完全恢复未知量子态的经典描述。虽然量子态断层扫描可以完整地表征目标状态,但成本相当高。最近的进展表明,在最坏情况下完全重建未知量子态需要指数级的状态副本(Haah 等人 2016;Odonnell 和 Wright 2016)。然而,在某些应用中,没有必要完全重建未知量子态。一些辅助信息就足够了。因此,一些学习任务会继续学习将一组双结果测量应用于未知状态的成功概率,并考虑某些指标。其中,阴影层析成像问题 (Aaronson 2018) 要求均匀估计集合中所有测量的成功概率。Aaronson (2018) 表明,阴影层析成像中未知状态所需的副本数量与量子比特的数量几乎呈线性关系,并且与测量次数呈多对数关系。更一般地,它可能不需要均匀估计所有双结果测量中误差内的成功概率。按照统计学习理论的思想,我们可以假设在某些可能的双结果测量中存在一个分布。我们的目标是学习一种量子态,使得从分布中采样的测量分别应用于学习状态和目标状态的成功概率之间的预期差异在特定误差范围内。这被称为量子态的统计学习模型或PAC学习模型。Aaronson(2007)证明,量子态PAC学习的样本数量只随着状态的量子比特数量线性增长,与全量子态层析成像相比,这是一个令人惊讶的指数减少。