我们基于从 Gutzwiller 平均场假设得出的作用的正则量化,开发了 Bose-Hubbard 模型的量子多体理论。我们的理论是对弱相互作用气体 Bogoliubov 理论的系统推广。该理论的控制参数定义为 Gutzwiller 平均场状态之上的零点涨落,在所有范围内都保持很小。该方法在整个相图中提供了准确的结果,从弱相互作用超流体到强相互作用超流体,再到 Mott 绝缘相。作为具体应用示例,我们研究了两点相关函数、超流体刚度、密度涨落,发现它们与可用的量子蒙特卡罗数据具有定量一致性。特别是,恢复了整数和非整数填充时超流体-绝缘体量子相变的两个不同普适性类。
通过将修改后的HI-C工作流程Hichip捕获的蛋白质指导的相互作用数据将研究人员链接到其控制的超级增强器。这项工作提供了一个框架来揭示致癌基因表达的复杂性。了解超级增强剂在推动致癌计划中的作用开辟了针对靶向疗法的新途径,不仅在多种骨髓瘤中,而且在其他癌症类型中。通过利用骨髓瘤细胞对PPP1R15B的依赖性用于在应激下管理蛋白质合成的依赖性,这种新型疗法有望改善患者的预后。
摘要超导涡旋的动力学是由非线性部分微分方程描述的复杂现象。现代方法已启用了有趣的几何形状中模拟涡流动力学。本文包括用于分析超导涡流(例如通量量化和固定)不同现象的基本方法论的描述。该项目的目标是模拟3D中的涡流动力学,以估计不同超导零件中涡旋强度的耦合强度。这些耦合力可能会影响超导MEMS共振器的行为。本文中给出的估计值表明,两个板之间的涡流耦合力将足够重要,足以可测量。为了将本文中的方法与测量的材料参数相结合。
由于神经外科手术期间大脑会变形,因此可以使用术中成像来可视化大脑结构的实际位置。这些图像用于图像引导导航以及确定切除是否完整并定位剩余的肿瘤组织。术中超声 (iUS) 是一种便捷的模式,采集时间短。然而,由于噪音和伪影,iUS 图像难以解释。特别是,肿瘤组织很难与健康组织区分开来,并且很难在 iUS 图像中划定肿瘤的界限。在本文中,我们提出了一种使用 2-D 和 3-D U-Net 在 iUS 图像中自动分割低级别脑肿瘤的方法。我们对网络进行了三重训练,每重有 12 个训练案例和 5 个测试案例。获得的结果很有希望,中位 Dice 得分为 0.72。估计分割和真实分割之间的体积差异与评分者内部体积差异相似。虽然这些结果是初步的,但它们表明深度学习方法可以成功应用于术中图像中的肿瘤分割。
摘要 — 本文探讨了人工智能 (AI) 技术在工业物联网 (IIoT) 网络性能预测中的应用。在工业环境中,5G 超可靠低延迟通信 (URLLC) 旨在为具有非常严格延迟要求的关键服务提供服务,例如涉及协作机器人的服务。即使灵活的 5G 新无线电 (NR) 设计能够实现目标 IIoT 性能,也需要为 URLLC 提供和保留必要的频谱资源。因此,需要一种服务质量 (QoS) 预测方案来预测性能下降并采取必要的措施,例如网络资源配置或应用程序适配,例如进入适配模式。我们探索了用于工业环境中 QoS 预测的 AI 算法的设计,并比较了不同的回归和分类工具,包括神经网络 (NN) 和 K 最近邻 (K-NN)。我们探索基于信号与干扰和噪声比 (SINR) 的预测,或仅基于机器人在工厂内的位置的预测。由于延迟降低事件通常很少发生,我们观察到训练数据高度不平衡,导致预测准确率低。我们展示了如何通过重要性抽样技术和修改后的检测阈值(我们称之为 M-KNN 方案)来提高预测性能。
日期:2024年10月10日摘要在LA 3 Ni 2 O 7中发现高温超导性,在压力下发现LA 4 Ni 3 O 10引起了广泛的关注。在此,我们报告了有关在各种压力下的结构,磁性和电阻的演变的系统研究。pr 4 ni 3 O 10-δ分别在约158 K和4.3 K处表现出在Ni和Pr sublattices上的密度波变变,并且可以通过压力逐渐抑制密度波。从单斜p 2 1 / a空间群到四方I 4 / mmm的结构转换发生在20 GPA左右。明显的磁场依赖性的电阻下降被观察到高于20 GPA的压力,表明PR 4 Ni 3 O 10-δ多晶样品中超导性的出现。在PR 4 Ni 3 O 10-δ中发现超导性的特征扩大了镍超导体的家族,并提供了一个新的平台,用于研究镍盐ruddlesden-Popper阶段中超导性的机理。1简介
必需震颤是一种神经(神经系统)疾病,会导致身体部位的非自愿摇动或发抖。基本震颤也可能被称为良性基本震颤,是最常见的震颤类型,在任何年龄都可以发生,但在40岁以上的人中最常见。没有已知的原因震颤的原因,但是50%的病例与遗传危险因素有关。研究表明,小脑,丘脑和皮层(大脑结构的组成部分)参与了必需震颤的机制。症状可能包括摇摇欲坠/颤抖的声音,点头点头和握手,影响写作,保持对象或使用工具的能力。症状可能是由某些药物,情绪,疲劳,咖啡因或温度变化引起的。
血脑屏障(BBB)是血管与脑实质之间的半渗透屏障,包括内皮细胞和外排转运蛋白之间的紧密连接,可主动从中枢神经系统中清除物质。离子和小于400 da)(DA)的小脂溶性分子通常能够通过BBB,但是较大的分子无法获得[1]。虽然对于维持中枢神经系统组成和免疫特你的环境至关重要,但BBB还阻碍了潜在的转化疗法到达大脑中的预期靶标[2,3]。正在研究BBB通透性的许多策略。从广义上讲,这些策略可以归类为跨细胞和细胞细胞[4]。在经跨细胞a的抗体中,可以使分子更具亲脂性来促进跨BBB的通道,或者可以增强载体介导的转运,以绕过BBB完全绕过BBB [5]。跨细胞方法可以受到与这些类型的释放兼容的药物限制。细胞细胞的方法涉及紧密连接的破坏,这可以通过化学或物理手段进行。BBB透化的化学细胞细胞机制通常依赖于血管活性剂,高质量化合物(例如甘露醇)或对Claudin蛋白家族的抗体(与紧密
在颗粒和准颗粒的现象学水平上,超导体(伦敦,金兹伯格 - 兰道,bcs和其他理论)中的超潮流产生机制有不同的方法。在基本场上理论层面上,我们将超流动性的本质归因于包含电磁场的计量量的物理学。在经典的力学和电动力学中,该规格电位是一个主要实体,因为它没有由其他数量定义。但是,在量子力学的框架中,我们可以定义由复杂标量场定义的量子规势。量子规势可以被视为电磁场基底态的局部拓扑非平凡的激发,其特征在于指数等于磁通量的整数数量。从普通和量子计势中产生了量规不变的有效向量电势,可以像电场和磁场一样观察到。这导致了Maxwell方程的修改:尺寸长度的常数和电磁相互作用的定位。所有这些情况都赋予了识别Supercurrent的有效向量潜力的方法。我们还考虑了电磁场的新形式与Dirac Spinor场此处介绍的物质的相互作用。这种带电的费米 - 摩擦形式的特征是两个参数。从现象观点的角度来看,这些参数源自电子电荷和质量,但总的来说,它们应由系统本身定义。当然,电磁相互作用在扩展电动力学中的定位是保守的。仅当电磁场仅由带有磁通量的Quange势势呈现电磁场时。电磁相互作用的定位可以视为量子物理效应和超导性的主要物理原因。我们相信,这将有助于阐明基础野外理论方法框架中所谓的高温超导性。在任何情况下,对电磁场的新形式的实验观察(“超导光”)是第一个需要的步骤。
超导间隙对称性对于理解潜在的超导性机制至关重要。角度分辨光发射光谱(ARPES)在确定非常规超导体中的间隙对称性方面起着关键作用。然而,到目前为止,ARPE只能测量超导间隙的大小,而不能测量其相位的幅度。该相必须由其他相敏感技术检测到。在这里,我们提出了一种直接检测ARPES超导间隙标志的方法。使用众所周知的D波间隙对称性,在Cuprate超导体BI 2 SR 2 SR 2 CACU 2 O 8+δ中成功验证了此方法。当两个频段具有较强的带间相互作用时,超导状态下所得的电子结构对两个频段之间的相对间隙标志敏感。我们目前的工作提供了一种检测间隙标志的方法,可以应用于各种超导体,尤其是具有多个轨道的超导体,例如铁基超导体。