鉴于轻型无线电和处理技术的可用性,使用气象气球的频谱传感系统变得可行。这种气球可在高达 40 公里的空域中航行,并可提供鸟瞰图和清晰的地面和空中频谱使用情况。在本文中,我们介绍了 SkySense,它是 Electrosense 传感框架的扩展,具有移动 GPS 定位传感器和本地数据记录。此外,我们还介绍了 6 种不同的传感活动,针对多种地面或空中技术,如 ADS-B、AIS 或 LTE。例如,对于 ADS-B,我们可以清楚地得出结论,检测到的飞机数量对于每个气球高度都是相同的,但由于碰撞,消息接收率会随着高度的增加而急剧下降。对于每个传感活动,都描述了数据集,并给出了一些示例频谱分析结果。此外,我们还分析和量化了从空中感知时可见的重要趋势,例如温度和硬件变化、环境干扰水平的增加以及轻量级系统的硬件限制。一个关键的挑战是系统的自动增益控制和动态范围,因为在 30 公里以上导航的无线电可以看到非常广泛的可能信号电平范围。所有数据都可通过 Electrosense 框架公开获取,以鼓励频谱感知社区进一步分析数据或激励使用气象气球进行进一步的测量活动。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2020 年 6 月 5 日发布。;https://doi.org/10.1101/2020.06.05.135913 doi:bioRxiv 预印本
目的刺激初级躯体感觉皮层 (S1) 已成功在人类和动物身上唤起人工躯体感觉,但对于产生稳健躯体感觉感知所需的最佳刺激参数仍知之甚少。在本研究中,作者研究了频率作为闭环脑机接口 (BCI) 系统中人工躯体感觉的可调刺激参数。方法三名癫痫患者的 S1 手部区域上装有硬膜下微型皮层电图网格,要求他们比较不同刺激频率引起的感知。幅度、脉冲宽度和持续时间在所有试验中保持不变。在每次试验中,受试者体验 2 次刺激,并报告他们认为哪个刺激频率较高。我们使用了两种范例:首先,比较50 Hz 和 100 Hz 以确定比较频率的效用,然后伪随机比较 2、5、10、20、50 或 100 Hz。结果随着刺激频率的幅度增加,受试者描述的感觉“更强烈”或“更快”。总体而言,参与者在比较 50 Hz 和 100 Hz 的刺激时达到了 98.0% 的准确率。在第二种范例中,相应的总体准确率是 73.3%。如果两个测试频率都小于或等于 10 Hz,准确率是 41.7%,当一个频率大于 10 Hz 时,准确率上升到 79.4%(p = 0.01)。当两个刺激频率均为 20 Hz 或更低时,准确率是 40.7%,而当一个频率大于 20 Hz 时,准确率是 91.7%(p < 0.001)。在 50 Hz 为较高刺激频率的试验中,准确率为 85%。因此,检测的下限出现在 20 Hz,当测试较低频率时,准确率显著下降。在测试 10 Hz 和 20 Hz 的试验中,准确率为 16.7%,而测试 20 Hz 和 50 Hz 的试验中准确率为 85.7% (p < 0.05)。当频率差异大于或等于 30 Hz 时,准确率高于偶然性。结论大于 20 Hz 的频率可用作可调参数以引起可区分的感知。这些发现可能有助于告知未来 BCI 系统的设置和可实现的自由度。