目的刺激初级躯体感觉皮层 (S1) 已成功在人类和动物身上唤起人工躯体感觉,但对于产生稳健躯体感觉感知所需的最佳刺激参数仍知之甚少。在本研究中,作者研究了频率作为闭环脑机接口 (BCI) 系统中人工躯体感觉的可调刺激参数。方法三名癫痫患者的 S1 手部区域上装有硬膜下微型皮层电图网格,要求他们比较不同刺激频率引起的感知。幅度、脉冲宽度和持续时间在所有试验中保持不变。在每次试验中,受试者体验 2 次刺激,并报告他们认为哪个刺激频率较高。我们使用了两种范例:首先,比较50 Hz 和 100 Hz 以确定比较频率的效用,然后伪随机比较 2、5、10、20、50 或 100 Hz。结果随着刺激频率的幅度增加,受试者描述的感觉“更强烈”或“更快”。总体而言,参与者在比较 50 Hz 和 100 Hz 的刺激时达到了 98.0% 的准确率。在第二种范例中,相应的总体准确率是 73.3%。如果两个测试频率都小于或等于 10 Hz,准确率是 41.7%,当一个频率大于 10 Hz 时,准确率上升到 79.4%(p = 0.01)。当两个刺激频率均为 20 Hz 或更低时,准确率是 40.7%,而当一个频率大于 20 Hz 时,准确率是 91.7%(p < 0.001)。在 50 Hz 为较高刺激频率的试验中,准确率为 85%。因此,检测的下限出现在 20 Hz,当测试较低频率时,准确率显著下降。在测试 10 Hz 和 20 Hz 的试验中,准确率为 16.7%,而测试 20 Hz 和 50 Hz 的试验中准确率为 85.7% (p < 0.05)。当频率差异大于或等于 30 Hz 时,准确率高于偶然性。结论大于 20 Hz 的频率可用作可调参数以引起可区分的感知。这些发现可能有助于告知未来 BCI 系统的设置和可实现的自由度。
图 3- 20: LVRT 期间无功功率响应不理想的典型电厂案例研究 ...................................................................................................................................... 78 图 3- 21: RE 电厂外部 765 kV Bhadla-Bikaner 电路 1 的相间故障 ............................................................................................. 79 图 3- 22:通过 400 kV Bhadla 端的 400 kV Bhadla-Bhadla-2 电路 1 的 PMU 观察到的 765 kV Bhadla-Bikaner 电路 1 的 YB 故障 ................................................................................................................ 80 图 3- 23: 事件期间的 Bassi PMU 频率 ............................................................................................................................. 80 图 3- 24: 通过 SCADA 观察到的 NR 发电损失为 7120 MW ............................................................................................................. 81 图 3- 25: LVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................................. 82 图3- 26 典型电厂在 LVRT 期间无功响应满意的案例分析 ...................................................................................................................... 83 图 3- 27 典型电厂在 LVRT 期间有功响应延迟的案例分析 ...................................................................................................... 84 图 3- 28 典型电厂在 LVRT 期间有功响应不满意的案例分析 ............................................................................................. 84 图 3- 29 典型电厂在 LVRT 期间无功响应不满意的案例分析 ............................................................................................. 85 图 3- 30 典型电厂在 HVRT 期间有功响应满意的案例分析 ............................................................................................. 85 图 3- 31 典型电厂在 HVRT 期间无功响应满意的案例分析 ............................................................................................. 86 图 3- 32 典型电厂在 HVRT 期间有功响应不满意的案例分析 ............................................................................................. 86 图 3- 33 典型电厂在 HVRT 期间无功响应不满意的案例分析 ............................................................................................. 87 图3- 34: 典型电厂响应不良的案例研究 ...................................................................................................... 88 图 3- 35: 765kV Bhadla2-Ajmer 电路 2 发生相接地故障,随后 RE 电厂外部的 A/R 失败 ................................................................................................................................ 89 图 3- 36: 765kV Ajmer-Bhadla2 ckt-2 发生相接地故障,随后 A/R 失败 ............................................................................................................................. 90 图 3- 37 事件期间 RE 发电量的减少(SCADA 数据) ............................................................................................................. 90 图 3- 38: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 39: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 40: 典型电厂在 LVRT 期间有功功率响应延迟的案例研究 ............................................................................................................. 3-41:LVRT 期间有功功率响应不理想的典型电厂案例研究...................................................... 94 图 3-42 2 月 9 日事件中的 NR 太阳能发电模式......................................................................................... 95 图 3- 43 2 月 9 日事件中的 NR 太阳能发电模式 .............................................................................. 95 图 3- 44:在 Bhadla 端打开 765 kV Bhadla-Bikaner 电路 1 线路电抗器 ............................................................................. 96 图 3- 45:打开线路电抗器后 765 kV Bhadla (PG) 的电压(根据 765 kV Fathegarh-2 Bhadla (PG) 线路的 PMU 记录) ................................................................................................................ 96 图 3- 46:事件期间的 Bassi PMU 频率 ............................................................................................................. 97 图 3- 47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 在过电压阶段 I 上跳闸 98 图 3- 48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ...... 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究 ................................................................................................................................................ 102 图 3-53:典型 RE 电厂的逆变器数据表 ............................................................................................................................. 104 图 3-54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110
准确控制两级系统是量子力学中的长期问题。一个这样的量子系统是频率键量置量:一种以两个离散频率模式叠加的单个光子。在这封信中,我们首次证明了对量子频率处理器中频率量矩阵的完全任意控制。我们在数值上建立了针对电形相调节器和脉冲塑料的多种配置的最佳设置,从实验上确认了所有基本旋转的近乎不合格模式转换保真度。单光子水平的性能通过将单个频率键符号旋转到分布在整个Bloch球体上的41点,以及对状态路径的跟踪,然后是可调频率梁分离器的输出,并带有贝叶斯断层扫描,并确认了状态状态忠诚度fρ> 0。98对于所有情况。这样的高保真转换扩大了量子通信中频率编码的实际潜力,在一般量子操作中提供了出色的精度和低噪声。
将电子自旋融入电子设备是自旋电子学的核心思想。[1] 这一不断发展的研究领域的最终目标是产生、控制和检测太赫兹 (THz) 速率的自旋电流。[2] 为了实现这种高速自旋操作,自旋轨道相互作用 (SOI) 虽然很弱,但却起着关键作用,因为它将电子的运动与其自旋态耦合在一起。[3] 从经典观点来看,SOI 可以理解为自旋相关的有效磁场,它使同向传播的自旋向上和自旋向下的传导电子偏向相反的方向(见图 1a)。SOI 的重要结果是自旋霍尔效应 (SHE) [4] 及其磁性对应物反常霍尔效应 (AHE)。[5,6] 在具有 SOI 的金属中,SHE 将电荷电流转换为横向纯自旋
摘要 本文讨论了分数阶 PDF-(1+PI) 控制器在孤立微电网中频率调节的应用,该控制器由 coot 优化算法调整。微电网由生物柴油发电机、生物质热电联产、ORC 太阳能热电厂、微型水力涡轮发电机和风力涡轮发电机组成。此外,还考虑了电池存储和燃料电池。这项工作致力于提出一种有效的方案,该方案可以作为社区或农场的模型,通过生物能源最大限度地减少浪费,并有效地在发电和需求之间实现同步,同时最大限度地减少频率偏差。针对各种实际场景测试了所提出的控制器。结果表明,分数阶 PDF-(1+PI) 表现出比 PIDF 和整数阶 PDF-(1+PI) 控制器更好的瞬态响应。关键词 1 分数阶 PDF-(1+PI) 控制器、基于生物能源的发电机、负载频率控制、微电网、coot 优化算法
摘要:稳定的电源已成为当前技术和趋势时代的关键因素。尽管电源系统存在多个稳定性问题和原因,但频率频率在正常操作中起着至关重要的作用,因此具有显着频率偏差的系统可以导致整个电源系统的不必要停电。随着电力电子转换器(PEC)基于基于的技术的快速增长以及非同步发电机的巨大渗透,现代电力系统迄今变得越来越复杂。本文对现代电力系统中发生的稳定性问题进行了全面研究,这主要是由于基于PEC的技术整合。讨论了不稳定的电力系统的深入理由和影响,以及它们的控制技术,以产生清晰的理解。此外,关于过去发生的一些重要事件,讨论了电力系统中频率稳定性的重要性。本文还讨论了一些可以执行的潜在技术,以克服升级电源系统中现有和/或即将到来的挑战。
固体金属材料中的磨损行为非常重要,因为它与生产成本有关。在这项工作中,磨损和磨损速率的行为显示在通过中频率感应炉中熔化而产生的高Fe-Cr-C合金产生的磨球,以及通过自动ϐ无孔成型机 - 脱落的造型机器的造型。总测试时间为(12小时)。磨料磨损速率,即耐磨性乘以mg/kg.hr的测试时间。通过用(50千克)(50 kg)旋转球,在圆形截面的柴油工作混合物内旋转球,倾斜45并旋转30 rpm,对三种合金中每种磨球:BC26,BC18和BC13进行测试。在文本中发现了加权和硬度测试结果,使用光谱分析ARL 34000 OE测试化学成分。获得的所有结果显示在表格中,文本中显示了图。因此,可以说,增加Cr%,增加硬度并降低磨损速率,并且其含有的Cr%和C%越高,磨损速率越低,并且耐磨损较高。
监控控制系统的“物理”以检测攻击是一个不断发展的研究领域。安全监控器的基本形式是为工业控制系统创建传感器读数的时间序列模型,并识别这些测量中的异常,以识别潜在的错误控制命令或错误传感器读数。在本文中,我们基于统一的分类法回顾了以前的工作,该分类法使我们能够识别限制、未探索的挑战和新的解决方案。特别是,我们提出了一种新的对手模型,并提出了一种将以前的工作与新的评估指标进行比较的方法,该评估指标基于误报和未检测到的攻击的负面影响之间的权衡。我们还展示了三种实验场景的优缺点,以测试攻击和防御的性能:从大型运营设施捕获的真实网络数据、可用于水处理的全功能测试平台以及电网中频率控制的模拟。
6.背景:ERCOT 互连最初被免除了 BAL-001 R2(控制性能标准 CPS2)。在 FERC 命令 693 中,NERC 被指示制定区域标准,作为确保 ERCOT 互连中频率性能的替代方法。NERC 被明确指示纳入现有协议第 8.5 节的关键要素。这要求州长投入服务并以非静音响应执行,以确保互连对频率可测事件 (FME)(从 t(0) 开始)的最小频率响应。本区域标准提供了与识别频率可测量事件、计算区域内每种资源的主频率响应、计算互连最小频率响应和监控互连的实际频率响应、设置调速器死区和下垂参数以及提供主频率响应性能要求相关的要求。根据本标准,计算了两个主频率响应 (PFR) 性能指标:“初始”和“持续”。初始 PFR 性能 (R9) 测量 20 至 52 期间的实际响应与预期响应的比较
随着光伏和风能的快速发展,电力系统中可再生能源的穿透速率正在逐渐增加。 此升级构成了一个挑战,因为它导致功率网格的惯性和阻尼不断减少,从而突出了电力系统中频率稳定性问题。 这是应对这种风险的有效措施之一,可再生能源(例如风力涡轮机)积极地为电网提供频率支持。 本文研究了风力涡轮机对系统频率支持的贡献的研究,考虑了两个方面:惯性支持和初级频率调节能力。 随后,分析了风力涡轮机支持系统的频率控制方法,强调了转子动能控制和动力储备控制在促进频率支持中的作用。 引入了风力涡轮机的瞬态频率支持能力的评估,并结合了控制方法,控制器参数和瞬态频率支持的持续时间。 提出了关键指标,包括瞬态频率支持阶段的累积能量和频率变化率指数,以定量评估风力涡轮机的瞬态频率支持能力。 这些指数为风力涡轮机瞬态频率支持功能的定量评估提供了一个全面的框架。随着光伏和风能的快速发展,电力系统中可再生能源的穿透速率正在逐渐增加。此升级构成了一个挑战,因为它导致功率网格的惯性和阻尼不断减少,从而突出了电力系统中频率稳定性问题。这是应对这种风险的有效措施之一,可再生能源(例如风力涡轮机)积极地为电网提供频率支持。本文研究了风力涡轮机对系统频率支持的贡献的研究,考虑了两个方面:惯性支持和初级频率调节能力。随后,分析了风力涡轮机支持系统的频率控制方法,强调了转子动能控制和动力储备控制在促进频率支持中的作用。引入了风力涡轮机的瞬态频率支持能力的评估,并结合了控制方法,控制器参数和瞬态频率支持的持续时间。关键指标,包括瞬态频率支持阶段的累积能量和频率变化率指数,以定量评估风力涡轮机的瞬态频率支持能力。这些指数为风力涡轮机瞬态频率支持功能的定量评估提供了一个全面的框架。