实现可扩展量子计算机面临的最大挑战之一是设计一个物理设备,使每个量子处理操作的错误率保持在较低水平。这些错误可能源于量子操纵的准确性,例如固态量子比特中栅极电压的扫描或光学方案中激光脉冲的持续时间。错误还源于退相干,退相干通常被认为更为关键,因为它是量子系统固有的,从根本上说是与外部环境耦合的结果。将小的量子比特集合分组为具有对称性的簇可能有助于保护部分计算免受退相干的影响。在这项工作中,我们使用 4 级核心和离散旋转对称性的直接概括(称为 ω -旋转不变性)来编码耦合量子比特对和通用 2 量子比特逻辑门。我们将量子误差作为退相干的主要来源,并表明对称性使逻辑操作特别能抵御不合时宜的各向异性量子比特旋转。我们提出了一种可扩展的通用量子计算方案,其中核心充当量子计算晶体管(简称量子电阻)的角色。通过将量子电阻与引线进行隧道耦合,可以实现初始化和读出。外部引线被明确考虑在内,并被认为是另一个主要的退相干源。我们表明,通过调整量子电阻的内部参数,可以动态地将量子电阻与引线解耦,从而赋予它们作为可控量子存储单元所需的多功能性。通过这种动态解耦,量子电阻内的逻辑运算也可以对称地免受参数中无偏噪声的影响。我们确定了可以实现 ω -旋转不变性的技术。我们的许多结果可以推广到更高级别的 ω -旋转不变系统,或适用于具有其他对称性的集群。
使用量子计算机进行计算化学和材料科学将使我们能够解决传统计算机上难以解决的问题。在本文中,我们展示了如何使用量子退火器计算有缺陷的石墨烯结构的相对能量。这个简单的系统用于指导读者完成将化学结构(一组原子)和能量模型转换为可在量子退火器(一组量子位)上实现的表示所需的步骤。我们详细讨论了如何在模型中包含不同的能量贡献以及它们对最终结果的影响。用于在 D-Wave 量子退火器上运行模拟的代码以 Jupyter Notebook 的形式提供。本教程旨在为有兴趣运行其第一个量子退火模拟的计算化学家提供快速入门指南。本文概述的方法代表了模拟更复杂系统(例如固体溶液和无序系统)的基础。
在我们对量子算法的研究中,我们发现了令人信服的证据,表明量子计算机将具有非凡的能力。但量子计算机真的能工作吗?我们能建造并操作它们吗?要做到这一点,我们必须迎接保护量子信息免受误差的挑战。正如我们在第 1 章中已经指出的那样,这一挑战有几个方面。量子计算机不可避免地会与周围环境相互作用,导致退相干,从而导致存储在设备中的量子信息衰减。除非我们能成功对抗退相干,否则我们的计算机肯定会失败。即使我们能够通过将计算机与环境完美隔离来防止退相干,误差仍然会带来严重的困难。量子门(与经典门相反)是从可能值的连续体中选择的幺正变换。因此,量子门无法以完美的精度实现;门中微小缺陷的影响会累积起来,最终导致计算严重失败。任何有效的防止量子计算机出错的策略都必须防止量子电路中的小单元错误以及退相干。在本章和下一章中,我们将看到如何巧妙地编码量子信息以防止错误(原则上)。本章将介绍量子纠错码的理论。我们将了解到,经过适当编码的量子信息可以存储在量子存储器中,暴露在嘈杂环境中,无需任何操作即可恢复。
摘要 通过模拟对基于 2 到 20 个纠缠原子的几种时钟协议的稳定性进行了数值评估,其中包括由于经典振荡器噪声引起的退相干效应。在这种情况下,André、Sørensen 和 Lukin [PRL 92, 239801 (2004)] 提出的压缩态与基于 Ramsey 协议的非纠缠原子时钟相比,提供了更低的不稳定性。当模拟超过 15 个原子时,Bužek、Derka 和 Massar [PRL 82, 2207 (1999)] 的协议具有较低的不稳定性。对具有 2 到 8 个量子比特的最佳时钟协议进行大规模数值搜索,与 Ramsey 光谱相比,时钟稳定性有所提高,对于两个量子比特,性能超过了分析得出的协议。在模拟中,激光本振由于闪烁频率 (1/ f ) 噪声而退相干。根据量子比特的投影测量,反复校正振荡器频率,假设量子比特彼此之间不会退相干。关键词:量子计量、自旋压缩、原子钟
摘要 我们使用飞机调度场景中的尾部分配和精确覆盖问题,对迄今为止最大的量子退火器(5000+ 量子比特量子退火器 Advantage 及其 2000+ 量子比特前身 D-Wave 2000Q)的量子处理单元进行了基准测试。基准测试集包含小型、中型和大型问题,其中既有稀疏连接实例,也有几乎完全连接的实例。我们发现,Advantage 在几乎所有问题上都优于 D-Wave 2000Q,成功率和问题规模都有显著提高。特别是,Advantage 还能够解决 D-Wave 2000Q 无法再解决的具有 120 个逻辑量子比特的最大问题。此外,仍然可以由 D-Wave 2000Q 解决的问题可以通过 Advantage 更快地解决。然而,我们发现,D-Wave 2000Q 可以在不需要 Advantage 上存在的许多新耦合器的情况下解决稀疏连接问题并获得更好的成功率,因此提高量子退火器的连通性本身并不会提高其性能。
7.入职后待遇 (1)身份:受聘为兼职人员(行政助理)。 (2)工资:A.日薪:约8100日元B.按规定发放交通津贴(每月最高55000日元)、期末津贴、勤勉津贴。 (3)其他 A. 原则上必须加入厚生年金保险、雇佣保险、共济会。 * 每月工作18天以上,连续工作六个月以上者,适用国家公务员退休金法。
当以 QUBO(二次无约束二进制优化)或 Ising 形式表示时,量子退火器提供了一种计算 NP 难题高质量解决方案的有效方法。这是通过将问题映射到量子芯片的物理量子比特和耦合器上来实现的,在称为量子退火的过程之后,从中读取解决方案。然而,这个过程受到多种偏差来源的影响,包括校准不良、相邻量子比特之间的泄漏、控制偏差等,这些偏差可能会对退火结果的质量产生负面影响。在这项工作中,我们旨在通过提供一种两步方法来减轻此类偏差对解决约束优化问题的影响,并将其应用于图分区。在第一步中,我们测量并减少因实施问题约束而导致的任何偏差。在第二步中,我们将目标函数添加到约束的结果偏差校正实现中,并将问题发送给量子退火器。我们将这一概念应用于图分割,这是一个重要的 NP 难题,它要求找到一个图的顶点分割,该分割是平衡的(约束)并最小化切割尺寸(目标)。我们首先量化量子退火器上约束实现的偏差,也就是说,在无偏实现中,我们要求任何两个顶点被分配到相同或不同分区部分的可能性相同。然后,我们提出了一种迭代方法来纠正任何此类偏差。我们证明,在添加目标后,在量子退火器上解决由此产生的偏差校正的 Ising 问题可获得更高的解决方案精度。