该方法的一个关键方面是开发一个与建筑行业工作相关的二氧化硅暴露数据库,该数据库通过对国际科学文献(期刊文章、公共和私人组织的报告以及数据库)进行详尽搜索而建立。该数据库将测量结果(暴露水平)与一系列与暴露和采样条件相关的合格参数相关联。与更经典的文献综述方法相比,这种策略更受青睐,后者包括单独分析期刊文章中的数据,并将信息综合在表格中,表格分别呈现每项研究,但这使得不同的数据难以解释。总共有 500 多份文件,其中 116 份被保留,因为它们包含与暴露水平相关的信息。此外,还分析了 67 份专门涉及控制方法的文件。
硅酸的电离性很差。在 pH 值为中性时,水中存在的几乎所有二氧化硅都是分子而不是离子。尽管强碱树脂能够分解盐,但分子二氧化硅无法通过离子交换途径进入离子交换珠,并且受到其扩散到珠子中的速率的限制。氯化物形式的阴离子树脂去除的入口二氧化硅不到 5%,部分原因是扩散限制,部分原因是二氧化硅在 pH 值为中性时电离不利。扩散限制也是二氧化硅选择性混合物和吸附剂去除二氧化硅缓慢且不完全的主要原因。二氧化硅到达吸附位点需要很长时间,比水通常与介质接触的时间要长得多。
约为 3.75 eV,高于 PbS 本体带隙值,这是由于纳米晶 PbS 壳中的量子限制效应,其厚度约为 10 nm,如前所述 [9],[25]。有效带隙的增加使纳米晶 PbS 结构成为太阳能电池应用中更合适的窗口材料。
本文介绍了一种新型金属基复合材料 (MMC),其以 Mg 基体为增强体,并用天然填料(Didymosphenia geminata 藻壳,具有独特的硅质壳)增强。采用脉冲等离子烧结 (PPS) 制造 Mg 基复合材料,其中陶瓷填料的体积百分比分别为 1%、5% 和 10%。作为参考,烧结了纯 Mg。结果表明,向 Mg 基体中添加 1% 体积百分比的 Didymosphenia geminata 藻壳可通过支持钝化反应来提高其耐腐蚀性,并且不会影响 L929 成纤维细胞的形态。添加 5% 体积百分比的填料不会引起细胞毒性作用,但它会支持微电化学反应,从而导致更高的腐蚀速率。当填料含量超过 5 vol.% 时,会引起严重的微电偶腐蚀,并且由于含有 10 和 15 vol.% 硅藻的复合材料的微电偶效应更强,会增加细胞毒性。接触角测量的结果显示了所研究材料的亲水特性,随着陶瓷增强体的增加,数值略有增加。Didymosphenia geminata 壳的添加会导致热弹性能的变化,例如热膨胀系数 (CTE) 和热导率 (λ) 的平均表观值。硅质增强体的添加导致 CTE 在整个温度范围内线性下降和热导率降低。随着 Didymosphenia geminata 壳的添加量增加,强度增加,压缩应变降低。所有复合材料的显微硬度都得到了增加。
摘要 - 我们已经开发了一种使用基于二氧化硅的分子印记聚合物(MIP)在卷心菜蓝色发射碳碳量子点(CQD)上涂覆并在光学上沉积的比率荧光传感器,用于检测多巴胺(DA)。物理化学表征确定了MIP和CQD的成功集成,该集成创建了用于监测的选择性有损模式共振(LMR)。优化了实验因子以获得最大响应,并且传感探针的动态响应范围为0.3至100 µm,检测极限为0.027 µm。该策略已成功地用于检测红酒,咖啡,苹果,橙子和宽豆汁样品中的DA,对其他潜在干扰物种(例如,肾上腺素,抗坏血酸,尿酸)具有可忽略不计的交叉反应性。这种新型的基于旋转的基于旋转的传感器具有对环境和生物样品的现场,便携式和现场感测的潜在潜力和多功能性。
沉积过程的一种非常特殊的情况是所谓的外延沉积,或者只是外延。该专业局部旨在将材料沉积到单晶模板上,生长为单晶层。半核心设备制造链中的第一步之一是在空白硅晶片上沉积外延硅。这是在外交过程中完成的。经常运行这些过程,一次仅处理一个晶圆(即单个晶圆处理)或少数数字(即多窃听或迷你批次)。
摘要我们报告了二氧化硅(SOS)晶状体上掺杂Erbium掺杂的平面波导的制造和表征,可提供低损耗和适用于用于工程光波导放大器(1530-1565 nm)的光纤维通信的较低的光限制。在这里,我们描述了一种超快的血浆掺杂(ULPD)技术,该技术是使用由飞秒激光(波长800 nm)诱导的血浆进行的,其重复速率为10 kHz,脉冲持续时间为45 fs。此处介绍的ULPD方法已成功应用于先前使用脉冲持续时间约为100 fs且重复速率为1 kHz的FS-LASER掺杂在SOS底物上的稀土材料。已经分析了厚度,折射率,光学传播损失,光致发光强度和光致发光寿命的厚度,折射率损失,光发光损失,光发光损失,光发光损失,光致发光的寿命。我们报告了C波段中<0.4dB/cm的低传播损失,长寿命为13.21 ms,在1532 nm和最大的寿命密度产物6.344 x10 19 s.cm -3。低损耗平面平板波导和高寿命密度的产品有望在SOS平台上制造带状的波导的进一步可能性。所提出的主动波导制造方法可能对制造平面的集成光学波导放大器和与基于硅的光子积分电路兼容的激光。
摘要。在过去30年中,在增强混凝土作为建筑材料的能力方面取得了重大进步,重点是使用硅粉(SF)进行高强度混凝土应用。全球对SF作为Pozzolanic混合物的兴趣由于其在特定百分比使用时具有增强混凝土性能的能力而飙升。这项研究检查了在混凝土混合物中添加SF的效果。最重要的是在腐蚀环境中混凝土的性能,可以通过添加SF来增强。为了强度和寿命,需要高强度混凝土。在这项研究中,用不同比例的二氧化硅烟雾(按骨料量为5%,10%和15%)制备混凝土。测试样品以评估其强度。在通用测试机上施放,固化和测试的立方体和梁。的发现表明,通过添加二氧化硅烟雾可以提高压缩和弯曲强度。通过掺入二氧化硅烟雾可以显着增强混凝土的机械和耐用性能。这项研究的发现对建筑行业的使用有助于使用二氧化硅烟作为增强力量的经济选择。
SuperCame和M2020团队:P。Beck,Ipag,Unive。Grenoble E. Dehouck,LGL-TPE,Unive。Lyon O. Beyssac,IMPMC,Paris O. Fornic,Irap,ToulouseE.Clavé5,DLR,DLR,Berlin St. Bernard,IMPMC,Paris E.A. 关闭,Unive。 温尼伯·L·曼顿(IPAG),大学。 Grenoble Alpes C. Royer,University W. Rapin,Irap,Toulouse S. Lyon F.污染,IAS,Unive。 巴黎 - 斯凯利T.脚,让,观察。 巴黎C. Plorage,IAS,Unive。 巴黎 - 塞克拉迪C.C. 贝德福德。 Gabriel,USGS,Flagstaff J.M. Madiaga,Unive。 国家巴斯克·阿拉纳(Basque G. Arana),Unive。 国家巴斯克圣克莱格特,Lanl A. Shock,IRAP,图卢兹R.C. 图卢兹大学圣莫里斯大学Lyon O. Beyssac,IMPMC,Paris O. Fornic,Irap,ToulouseE.Clavé5,DLR,DLR,Berlin St. Bernard,IMPMC,Paris E.A.关闭,Unive。温尼伯·L·曼顿(IPAG),大学。Grenoble Alpes C. Royer,University W. Rapin,Irap,Toulouse S.Lyon F.污染,IAS,Unive。 巴黎 - 斯凯利T.脚,让,观察。 巴黎C. Plorage,IAS,Unive。 巴黎 - 塞克拉迪C.C. 贝德福德。 Gabriel,USGS,Flagstaff J.M. Madiaga,Unive。 国家巴斯克·阿拉纳(Basque G. Arana),Unive。 国家巴斯克圣克莱格特,Lanl A. Shock,IRAP,图卢兹R.C. 图卢兹大学圣莫里斯大学Lyon F.污染,IAS,Unive。巴黎 - 斯凯利T.脚,让,观察。巴黎C. Plorage,IAS,Unive。巴黎 - 塞克拉迪C.C.贝德福德。Gabriel,USGS,Flagstaff J.M. Madiaga,Unive。 国家巴斯克·阿拉纳(Basque G. Arana),Unive。 国家巴斯克圣克莱格特,Lanl A. Shock,IRAP,图卢兹R.C. 图卢兹大学圣莫里斯大学Gabriel,USGS,Flagstaff J.M.Madiaga,Unive。国家巴斯克·阿拉纳(Basque G. Arana),Unive。国家巴斯克圣克莱格特,Lanl A. Shock,IRAP,图卢兹R.C.图卢兹大学圣莫里斯大学
具有良好潜在应用前景的纳米结构无机材料引起了基础和实际方面的广泛研究关注。SiO 2 (二氧化硅) 是最广泛使用的无机材料之一,在微电子 1、2 、微机电系统 3、4 和微光子学 5、6 等领域需要具有纳米级分辨率的制造方法。为了制造具有所需纳米结构的二氧化硅,通常需要复杂的自上而下的图案化工艺,包括热氧化 7 和化学气相沉积 8,然后进行干 9、10 或湿 11、12 蚀刻步骤。虽然已经开发出具有高产量的成熟加工技术,但这些技术涉及使用危险化学品(例如抗蚀剂、显影剂和蚀刻剂)并且需要复杂的制造设备。此外,使用自上而下的制造方法实现纳米分辨率的复杂和/或不对称的三维 (3D) 结构非常具有挑战性。因此,对能够生产具有复杂几何形状和化学变化的 3D 二氧化硅结构的直接纳米制造技术的需求很大。新兴的增材制造 (AM) 技术或使用数字设计的 3D 打印可以通过逐层沉积 13-16 创建精细结构,以生成复杂的结构并简化制造过程。更重要的是,作为一种已得到充分证明的自下而上的技术,据报道 3D 打印可以构造曲线基底 17、非平面表面 18 和曲折的 3D 图案 19,这些超出了传统自上而下的图案化方法的能力。熔融石英玻璃的 AM 是通过对无定形富含二氧化硅的浆料 20 进行立体光刻实现的,分辨率为几十微米。尽管已经制造出具有出色光学和机械性能的明确结构,但商用 3D 打印技术提供的空间分辨率相对较低,限制了它们在微电子、微机电系统和微光子学中的应用。新兴的微数字光处理技术 2