二氧化碳去除(CDR)是不可避免的,并且几乎可以肯定需要将温暖限制为2°C。海洋交换二氧化碳(CO 2)的含量可以使大使人的能力允许coRBONITY允许coRBORNODICE cOR均能倒入2°coarbority coarbory of CoR的co coRONET cORSTORITY cOR均可提供的co coRONED coRONET cORSTORITY cORSTORITY cORSTORITY cOR cOR均可供应。从大气中删除其他CO 2。存在早期技术在大气中使用海洋,但通常情况下,大气CO 2去除这些技术会刺激其活性的下游。验证与这些技术相关的碳去除,同时在评估方法和定价时至关重要。This study briefly reviews the challenges associated with verifying the carbon removal associated with non-biological (abiotic) engineered marine CDR approaches, specifically Ocean Alkalinity Enhancement and Direct Ocean Carbon Capture and Storage, and presents the findings from a workshop held with interested parties spanning industry to government, focused on their collective requirements for the Monitoring, Reporting, and Verification (MRV) of carbon removal.我们发现,有可能就非生物海洋MRV的一系列共同原则达成共识,但是确定以当今的理解和技术来实现这一MRV可能会非常昂贵。我们讨论了降低海洋MRV成本的焦点区域,并强调了最终监管机构刺激对所需工作的投资的MRV标准规范的重要性。高质量的MRV对于正确定价任何CO 2删除很重要,但是我们确定MRV方法中的可访问性和透明度对于实现MRV对社会的更广泛利益也是关键。
3的排放明显大于范围1和2排放,因此即使是假设的小变化也会极大地影响报告的足迹。•公司有权确定15个范围3类别中的哪些排放量与其二氧化碳足迹相关。因此,可能不会报告一些相关范围3的排放。这种可变性还使比较同一部门或不同年份内公司之间的范围3排放的比较变得复杂。•由于范围3的排放包括整个价值链,因此存在双重计数的风险。排放可能是我们投资组合中多家公司的价值链的一部分,因此可能由多家公司报告。
Phanerokoic碳循环:CO 2和O 2;罗伯特·A·伯纳(Robert A. Berner),纽约,牛津大学出版社,2004年,158页,$ 99.50。,碳周期的内部运作仍有待理解,这一事实可以清楚地表明,即使在发现之后20年,大气CO 2的浓度与大陆冰的浓度与大陆冰块的共同变化,通过一系列强烈的冰川循环(在地球历史的最后2000年)仍然存在。本书的重点在于时间尺度的时间要比这一轨道诱发的冰川和脱气周期的100,000年期更长。在较长的时间尺度上,伯纳(Berner)限制了他的注意力,通过phanerozoic eon(0 - 540 mA),他对大气CO 2的演变的推断是基于碳循环在准平衡模式下运行的假设。最近已经证明了该假设的植物学时代(0 - 60 MA)的Cenozoic时代,以及Rothman等人(2003)(2003年)的前寒武纪(540 - 550 MA)的Ediacaran时期的一部分。这些测试得出了一个总体的结论,即,对于测试的phanerokoic间隔,基于稳态假设的伯纳(Berner)推论是相当合理的。鉴于此类测试尚未与他的方法论基础的主要假设相矛盾,所以伯纳关于这个重要主题的简洁书值得我们引起我们的认真关注。伯纳对整个Phanero-Zoic Eon浓度的演变的预测,如GeoCarb III模型所示(Berner and Kothavala,2001年),最近在此间隔中,O 2和CO 2的变化的重新填充的Geocarbsulf模型(bernera和kothera aberner abernera and aberner aberera y more to n of bernera)通过采用适当简单的表面气候模型来确定其预测的CO 2水平是否与这些推论有关的特定时期是否可用的特定时期(例如,请参见Hyde等人,2006年)。尤其如此,因为这本书确实提供了对这种方法的清晰说明,并详细讨论了他所使用的数据以及对他模型对一系列独立约束进行测试预测的跨检查。首先区分他所说的“短期”和“长期”碳循环,其中构成了他方法论的基础的准平衡的假设,这本书继续在4个简短的章节中继续以解决产生Phanerozoic CO 2重建所需的主要投入。在第2章中介绍了海洋在长时间尺度上控制大气CO 2的钙硅酸盐钙硅酸盐的大陆化学风化过程;第3章中讨论了在有机物和碳酸盐海洋中涉及的过程,最后在第4章中讨论了CO 2和CH 4从地球内部和海洋中脱离的过程。本书的最终章节本书的第5章通过讨论GeoCarb III模型,总结了Berner通过Phanerozoic的大气CO 2变化结果,该结果最近已随着GeoCarbsulf的出版而更新。
摘要:为了响应越来越多的气候关注,精确的工业二氧化碳(CO2)排放预测至关重要。采用先进的机器学习(ML)技术,本研究着重于使用来自数据数据集中的全球数据(包含有关水泥,煤炭,燃料,燃烧,天然气和石油工业的年度排放信息)的全球数据的预测工业二氧化碳排放。探索了包括支持向量回归(SVR),线性回归和XGBoost在内的各种回归模型,主要重点是时间序列预测年度CO2排放的模型。利用时间序列的预测,排放数据中复杂的时间趋势是有发现的,提供了增强的预测性见解。CO2预测文献进行了审查,收集和预处理数据,并实施了各种ML算法,然后进行了超参数调整。经过严格训练和评估的模型产生准确的排放预测。结果强调了由斯坦福大学与Facebook Inc.开发的Transformer模型和神经先知图书馆的出色表现,RMSE得分为416.58和470.30,与349.07和380.40相比,MAE的MAPE得分为0.01,MAPE得分均为0.01,相对较低。DEEPTCN还表现出竞争性的预测能力,但缺乏变压器模型和神经先知模型的准确性。与神经先知和变形金刚相比,包括Arima,Naive预测,自动回归(AR),指数平滑和Sarima滞后的传统模型。这些发现强调了ML在推进可持续的环境管理方面的有希望的作用,并为随后的研究努力铺平了道路。关键字:二氧化碳排放,工业排放,可持续性,环境AI,机器学习,时间序列预测。
丹麦1 Greensand Stroces不适用的Greensand Project已于2023年3月8日成功进入其示范阶段,标志着CCS行业的里程碑,因为它成为欧洲第一个运营全价CCS项目。更具体地说的二氧化碳是在比利时安特卫普的Ineos氧化物(化学工业)捕获的,越过跨境,并在海床以下1800米处存储在北海南部的丹麦尼尼西田(耗尽的油田)。在其成功的演示阶段之后,预计Greensand Project的全面部署将于2025年,二氧化碳存储容量为8 MTPA。
摘要:本文介绍并讨论了现代二氧化碳捕获方法和技术(燃烧前捕获、燃烧后捕获和富氧燃烧捕获),以及这些方法的原理和现有及运行中的装置实例。介绍了所选方法和技术的主要区别,以及将其应用于新型低排放能源技术的可能性。本文讨论了以下二氧化碳捕获方法:燃烧前、基于化学吸收的燃烧后、物理分离、膜分离、化学循环燃烧、钙循环过程和富氧燃烧。总结了正在运行和正在开发的大型碳捕获利用和储存 (CCUS) 设施。2021 年,目前有 27 个商业 CCUS 设施正在运行,捕获能力高达每年 4000 万吨二氧化碳。如果所有项目都启动,全球二氧化碳捕获潜力可能超过每年捕获的 1.3 亿至 1.5 亿吨二氧化碳。本文还介绍和描述了用于比较和评估二氧化碳排放、捕获、避免以及与避免二氧化碳排放相关的成本的最流行和最发达的指标。
摘要。在 24 名使用呼吸机的早产儿(平均胎龄 30.2 周)的连续测量中,将近红外光谱记录中二氧化碳引起的变化与通过 '33Xenon 清除率(全脑血流量(无穷大))估算的脑血流量变化进行了比较。在所有婴儿中,通过调整呼吸机设置获得不同的动脉二氧化碳张力水平(平均 4.4 kPa,范围 2.1-7.8),进行了三次测量。平均动脉血压自发变化,而动脉氧张力保持在正常范围内。在所有波长(904、845、805 和 775 nm)下,较高的动脉二氧化碳张力水平使 OD 增加,表明脑血管扩张。将数据转换为含氧和脱氧血红蛋白浓度的变化,支持了这一结论。发现脑血容量指数和全脑血流量(无穷大)平行增加(p < 0.0001)。细胞色素 aa3 的氧合水平随氧气输送的增加而增加(p < 0.0001)。然而,由于氧化细胞色素 aa3 和含氧血红蛋白信号之间的串扰,这一观察结果可能是人为的,因为这些信号在本实验设计中是紧密相关的。我们建议近红外光谱法可用于估计广泛动脉二氧化碳张力范围内的脑血容量指数/脑血流量-CO2 反应性。了解光路长度将使这一估计具有定量基础。(Pediatv Res 27:445-449,1990)
行星的温度取决于阳光的吸收与热量损失到空间之间的能量平衡。在地球上,有一个相对平衡的能量平衡,使行星可居住数十亿年。当阳光到达地球的表面时,它可以反射回太空而不温暖地球,也可以吸收并温暖地球(当行星吸收能量时,其中一些能量被释放到大气中作为热量)[1]。大气中的一些气体吸收能量并延迟或防止热量释放到太空。这些气体被称为温室气体(GHG),其作用像毯子,使地球比以前更温暖。这个被称为温室效应的过程是自然而自然而必要的,可以维持地球上的生命。然而,由于人类活动而导致的这些气体释放的无限增加正在导致这些气体在大气中的积累,并且正在改变地球的气候(全球变暖),对人类的健康和福祉造成了危险的后果,甚至对生态系统的健康和福祉造成了危险的后果[2]。最重要的温室气体是二氧化碳(CO 2),甲烷(CH 4)和一氧化二氮(N 2 O)。然而,人类使用化石燃料还会产生其他环境有害的气体,例如一氧化碳(CO),氮氧化物(NOX),二氧化硫(SO 2),非甲烷挥发性有机化合物(NMVOC)和颗粒物,有助于气候变化[3]。氟化的气体(F-Gasses)没有明显的天然来源,即它们起源于人造活动。如图1所示,温室气体的排放随着人类的发展和增长而增加,这表明了1990 - 2019年GTCO 2 -eq [4]中某些气体的排放。这些气体有四个主要类别,这些类别分为氢氟化合物(HFC),全氟甲虫(PFCS),硫六氟乙烯(SF 6)和氮三氟化物(NF 3)(NF 3),而HFC则是最重要的。这些气体在大气中可以长寿,
CCS的欧盟监管框架首先是由欧盟委员会于2007年提出的(EC,2007年)。CCS指令2009提供了CO 2存储的框架,仅简短地提及了捕获和运输。CCS指令得到一系列六个指导文件的支持。指导涵盖:存储综合体,表征,风险管理,流组成,监视和纠正措施,将责任转移给主管当局的标准以及财务安全和财务机制。气候行动总局(DG Clima)于2022年委托DNV修改指导文件,以反映当前对CCS的理解并删除在早期CCS项目开发过程中确定的歧义。可以预期在第三季度2024中的结果。
地质碳捕获和存储(CCS)是减轻温室气体排放的关键技术,但泄漏的风险仍然是一个重大问题。跨密封间隔的故障和断裂网络是CO 2逃脱存储库的潜在途径,因此需要准确评估其渗透率和连通性。我们的研究提出了一种对断层区域地质泄漏进行建模的综合方法,将单断层应力 - 透明度实验室测量与详细的断裂露头数据相结合,以模拟碳存储的原位条件。我们研究了由konusdalen West区域(挪威Svalbard)的正常断层切割的Caprock序列,这是Longyearbyen Co 2实验室储层的区域密封,以及与Barents和North Sean Seas Caprock地层的类似物。数字化露头裂缝网络,我们探索了断裂尺寸分布的变化及其在断层区不同部分中的连接性。这些参数是基本的,以确定断裂网络是否提供了可渗透途径。将露头分析与实验室测量相结合,使我们能够创建自然断裂网络的耦合水力力学模型,并评估其高尺度的渗透性。我们发现,断裂网络几何形状在整个断层区域各不相同,从而导致不同的高尺度渗透率模型,从而突出了将详细的断裂网络信息纳入渗透性模拟中的重要性。我们的研究提供了一个框架,将断裂通透性测量和露头分析纳入故障区域的地质泄漏建模,这可以为CCS项目的设计和操作提供信息,并有助于减轻与CO 2的地质存储相关的风险。