目前使用各种方法来量化与增强风化(EW)相关的二氧化碳去除(CDR),该方法涉及修改硅酸盐矿物质压碎的土壤。我们的目的是通过补充最近发表的土壤柱实验的结果来为CDR定量的标准化程序做出贡献,其中将压碎的橄榄石,氧化球和albite添加到土壤中,并在土壤中添加了总融合ICP-OES分析碱基阳离子浓度。CDR仅与基于渗滤液的总碱度测量值相当,校正了保留在土壤剖面中的风化产物后,我们将其定义为智障分数。智障分数占风化阳离子的92.7–98.3%,表明至少在我们的短期研究(64天)中,大多数风化产物保留在土壤中。进一步研究了智障风化产物的命运表明,以碳酸盐矿物质(最高34.0%)沉淀或吸附到反应性表面,例如土壤有机物和粘土矿物(最高32.5%)。因此,由于强烈的吸附和/或进一步的矿物降水反应(31.6–92.7%),可能会保留大部分风化产品,这可能对整个时间的CDR进行量化具有潜在的重要意义。我们得出的结论是,基于土壤的质量平衡方法可用于量化风化速率,并可以推断潜在的CDR。但是,仅在考虑到智障分数后才能限制在给定时间和深度间隔内实现的实际CDR。
为了增加并网社区和离网社区可再生能源发电量的比重,需要存储系统来弥补其间歇性。压缩空气储能 (CAES) 过程越来越受到关注。它们现在的特点是大规模、长寿命和经济高效的储能系统。压缩二氧化碳储能 (CCES) 系统基于相同技术,但以 CO 2 作为工作流体。它们允许在非极端温度条件下进行液体储存。对这项新技术进行了文献综述。这些系统之间的区别在于是否存在外部热源、储存的 CO 2 的热力学状态以及热回收和利用的方式。为了更好地理解各种各样的配置,它们根据外部热量的使用和存储位置(地下或地上)进行了分类。由于没有液体储存的动态模型,本文提出了一种模型,并带来了未来的研究中必须考虑的新挑战。此外,还缺乏实验研究来验证 CCES 行为以及涡轮机械和热储存器等一些组件。
印度人口超过14亿,与西方国家相比,结肠癌的发病率相对较低。 印度的ASR约为每10万人4.9人,大大低于吉尔吉斯斯坦和许多发达国家。 然而,最近的趋势表明,由于饮食习惯,城市化和肥胖率上升的增加,病例稳定增加。 ICMR-National Cancer注册表计划(NCRP)的数据表明,在城市中心,结肠癌比农村地区更为普遍。 尽管在主要城市拥有高级医疗设施,但印度仍面临确保广泛获得早期筛查和及时治疗的挑战,尤其是在贫困地区。印度人口超过14亿,与西方国家相比,结肠癌的发病率相对较低。印度的ASR约为每10万人4.9人,大大低于吉尔吉斯斯坦和许多发达国家。然而,最近的趋势表明,由于饮食习惯,城市化和肥胖率上升的增加,病例稳定增加。ICMR-National Cancer注册表计划(NCRP)的数据表明,在城市中心,结肠癌比农村地区更为普遍。尽管在主要城市拥有高级医疗设施,但印度仍面临确保广泛获得早期筛查和及时治疗的挑战,尤其是在贫困地区。
COVID-19 摘要 COVID-19 大流行已成为地球上最致命的传染病之一。数百万人和企业被封锁,其主要目的是阻止病毒传播。作为一种极端现象,封锁以惊人的速度引发了全球经济冲击,导致许多国家经济急剧衰退。与此同时,COVID-19 大流行导致的封锁彻底改变了能源消费模式,并减少了全球二氧化碳排放量。国际货币基金组织和国际能源署最近发布的 2020 年数据进一步预测,排放量将在 2021 年反弹。尽管如此,COVID-19 的全面影响(包括危机将持续多久以及能源消费模式和相关的二氧化碳排放水平将受到怎样的影响)尚不清楚。本评论旨在通过对 COVID-19 大流行对世界经济、世界能源需求和未来几年可能出现的世界能源相关二氧化碳排放的已观察到的影响和可能影响进行广泛而令人信服的概述,引导各国的政策制定者和政府朝着更好的方向发展。事实上,鉴于我们需要立即采取政策应对措施,且同样紧迫地解决三个问题——大流行、经济衰退和气候危机。本研究概述了可以在这些不确定时期用作指导的政策建议。 关键词:经济危机;能源使用;二氧化碳排放;气候变化;政策;COVID-19 1. 简介 COVID-19 大流行正在对世界上许多经济体造成破坏,引发全球健康危机,并因严格的隔离措施而放缓国际贸易和商业(Harapan 等人,2020 年)。除少数国家外,大多数国家都因应对大流行而进入了停滞状态。就全球各种情况而言,预计 2020 年全球国内生产总值 (GDP) 损失可能在 1.3% 至 5.8% 之间 (McKibbin & Fernando, 2020),尽管疫情对全球经济的影响具有高度不确定性 (Yu & Aviso, 2020)。经济合作与发展组织 (OECD) 和世界贸易组织指出,自 2008-2009 年全球金融危机以来,COVID-19 疫情是全球各国面临的最大警告 (Sruthi, 2020)。一些专家甚至认为,自第二次世界大战以来,世界从未经历过如此不寻常的紧急状态 (Chakraborty & Maity, 2020)。
目的 面对温室效应导致的气体排放增加和化石燃料枯竭,需要采用对环境影响小且促进可再生能源的技术来满足能源需求。最近有报道称,磁加热激活的 CO 2 甲烷化是一种高效创新的电转气技术,可以成功储存可再生能源并增值二氧化碳。在这项工作中,我们对该过程进行了生命周期评估 (LCA),以突出该技术的环境潜力及其与传统加热技术的竞争力。方法 本 LCA 使用 IMPACT 2002+。所研究的过程集成了甲烷化、水电解和 CO 2 捕获与分离。这项“从摇篮到大门”的 LCA 研究不考虑反应产物甲烷的使用。使用的功能单元是产生的 CH.i 的能量含量。 LCA 是使用法国环境与能源管理局 (AD EME) 提供的 2020 年和 2050 年的能源结构数据进行的。消耗数据要么来自文献,要么从 Marbaix (2019) 讨论的 LPCNO 测量中获得。将磁加热激活的 CO 2 甲烷化对环境的影响与使用传统加热 (Helmeth) 并考虑天然气开采对环境影响的电转气厂对环境的影响进行了比较。结果表明,反应物的总流速、CO 2 来源和能源结构对可持续 CH 4 生产的环境影响起着重要作用,而所考虑的催化剂的寿命没有显著影响。由于上述参数可能得到改进,预计到 2050 年,整个过程对环境的影响将减少 75%。这表明,当与工业废气和可再生电力生产相结合时,磁加热激活的甲烷化具有很高的环境潜力。结论与现有的使用外部加热源的类似工艺相比,该技术预计在环境方面具有竞争力,并且具有极强的响应动态性,符合可再生能源生产的间歇性。
索邦大学,CNRS,UMR 7621,微生物eanography实验室,Banyuls的愉悦观察者,F-666650 Banyuls-Sur-Sur-Mer,法国B SAS Plastic@Sea,OC SEA,OC oc'an Anological Obistration,Banyuls的Anological Obiservatory,Banyuls of Banyuls,F-666650,F-66650,F-66650,F-66650,F-66650,F-66650 F-66650 Banyuls-sur-Mer,法国,Genoscope,Genoscope,InstitutFrançoisJacob,CEA,CNR,CNRS,Univ Evry,Univers Paris-Saclay,F-91057 Evry,法国E,Toulouse E Universe of Toulouse,Toulouse,CNRS,CNR,UMR 5623,UMR 5623,摩尔(Moli)互动(ecloriation and Moli cocrionity and copliential and cothiolition and cothiolition and craporiation and cripation and cripation and cription and c。 F-31000 Toulouse,法国F Sorbonne University,CNRS,UMR 8222,底栖环境的Eochimia实验室,Oc'Es'Sanologique Banyuls of Banyuls,F-666650 Banyuls-Sur-Sur-Sur-Sur-Sur-Sur-法国,法国
5。自2021年以来,进行了小规模的站点实验,对涉及地热井开挖的现场实验进行了准备(以下是“大规模站点实验”),因为有必要彻底评估诸如诱导地震和CO2的实验的风险,而在诱导的地震中泄漏了一些漏洞,并且在其他方面进行了研究22。目前,正在为实施计划于2025财政年度的小规模现场实验的实施做准备。
二氧化碳在全球温度循环中发挥的关键作用引发了人们对碳捕获和储存的持续研究关注。在众多选择中,锂-二氧化碳电池最引人注目,因为它不仅可以将废弃的二氧化碳转化为增值产品,还可以储存可再生能源产生的电能并平衡碳循环。该系统的开发仍处于早期阶段,面临着二氧化碳引入带来的巨大障碍。本综述详细讨论了电极、界面和电解质面临的关键问题,以及解决这些问题所需的合理策略,以实现高效的二氧化碳固定和转化。我们希望本综述能为全面了解锂-二氧化碳电池提供资源,并为未来探索可逆和可充电的碱金属二氧化碳电池系统提供指导。
Binder content ( B ) [kg/m 3 ] 303 321 361 344 313 413 Binder content ( b ) [wt.%] 12.5 13.2 14.8 14.3 12.9 16.9 Clinker content in binder ( c [wt.%] 95 73 15 67 67 24 Clinker content in concrete [wt.%] 11.9 9.6 2.2 9.6 8.6 4.1 CaO content在Binder(CAO)[wt。%] 64.8 48.9 45.1 46.9 57.8 47.3混凝土中的CAO含量[wt。%] 8.1 6.5 6.5 6.7 6.7 6.7 6.7 7.5 8.0 8.0